

JavaScript &
jQuery

The book that should have been in the box®

JavaScript &
jQuery

David Sawyer McFarland

Beijing | Cambridge | Farnham | Köln | Sebastopol | Tokyo

The book that should have been in the box®

2nd Edition

JavaScript & jQuery: The Missing Manual, Second Edition
by David Sawyer McFarland

Copyright © 2012 David Sawyer McFarland. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles: safari.oreilly.com. For more information,
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Printing History:

July 2008: First Edition.

October 2011: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, the O’Reilly logo, and “The book that should
have been in the box” are registered trademarks of O’Reilly Media, Inc. JavaScript & jQuery:
The Missing Manual, The Missing Manual logo, Pogue Press, and the Pogue Press logo are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc.,
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

ISBN: 978-1-449-3-9902-3

[M]

v

Table of Contents

	 The	Missing	Credits	. xiii

	 Introduction	 . 1

Part One: Getting Started with JavaScript
Chapter	1:	Writing	Your	First	JavaScript	Program 21

Introducing Programming . 22
What’s a Computer Program? . 24

How to Add JavaScript to a Page . 25
External JavaScript Files . 27

Your First JavaScript Program . 29
Writing Text on a Web Page . 31
Attaching an External JavaScript File . 33
Tracking Down Errors . 34

The Firefox JavaScript Console . 35
Displaying the Internet Explorer 9 Console . 37
Opening the Chrome JavaScript Console . 38
Accessing the Safari Error Console . 39

Chapter	2:	The	Grammar	of	JavaScript 41
Statements . 41
Built-In Functions . 42
Types of Data . 42

Numbers . 43
Strings . 43
Booleans . 44

Variables . 45
Creating a Variable . 45
Using Variables . 48

Working with Data Types and Variables . 50
Basic Math . 50
The Order of Operations . 51

vi table of contents

Combining Strings . 51
Combining Numbers and Strings . 52
Changing the Values in Variables . 53

Tutorial: Using Variables to Create Messages . 55
Tutorial: Asking for Information . 57
Arrays . 59

Creating an Array . 60
Accessing Items in an Array . 62
Adding Items to an Array . 63
Deleting Items from an Array . 66

Tutorial: Writing to a Web Page Using Arrays . 66
A Quick Object Lesson . 70
Comments . 72

When to Use Comments . 73
Comments in This Book . 74

Chapter	3:	Adding	Logic	and	Control	to	Your	Programs	 77
Making Programs React Intelligently . 77

Conditional Statement Basics . 79
Adding a Backup Plan . 82
Testing More Than One Condition . 83
More Complex Conditions . 86
Nesting Conditional Statements . 88
Tips for Writing Conditional Statements . 88

Tutorial: Using Conditional Statements . 89
Handling Repetitive Tasks with Loops . 93

While Loops . 93
Loops and Arrays . 95
For Loops . 97
Do/While Loops . 98

Functions: Turn Useful Code Into Reusable Commands 100
Mini-Tutorial . 101
Giving Information to Your Functions . 102
Retrieving Information from Functions . 104
Keeping Variables from Colliding . 105

Tutorial: A Simple Quiz . 108

Part Two: Getting Started with jQuery
Chapter	4:	Introducing	jQuery	. 117

About JavaScript Libraries . 117
Getting jQuery . 119
Adding jQuery to a Page . 122
Modifying Web Pages: An Overview . 124
Understanding the Document Object Model . 127

viitable of contents

Selecting Page Elements: The jQuery Way . 129
Basic Selectors . 130
Advanced Selectors . 133
jQuery Filters . 135
Understanding jQuery Selections . 136

Adding Content to a Page . 138
Replacing and Removing Selections . 140

Setting and Reading Tag Attributes . 141
Classes . 142
Reading and Changing CSS Properties . 143
Changing Multiple CSS Properties at Once . 144

Reading, Setting, and Removing HTML Attributes . 146
Acting on Each Element in a Selection . 147

Anonymous Functions . 148
this and $(this) . 149

Automatic Pull Quotes . 150
Overview . 151
Programming . 152

Chapter	5:	Action/Reaction:	Making	Pages	Come		
Alive	with	Events	 . 157
What Are Events? . 157

Mouse Events . 159
Document/Window Events . 160
Form Events. 161
Keyboard Events . 162

Using Events the jQuery Way . 162
Tutorial: Introducing Events . 165
More jQuery Event Concepts . 169

Waiting for the HTML to Load . 169
jQuery Events . 171
The Event Object . 173
Stopping an Event’s Normal Behavior . 175
Removing Events . 175

Advanced Event Management . 177
Other Ways to Use the bind() Function . 179

Tutorial: A One-Page FAQ . 180
Overview of the Task . 180
The Programming . 180

Chapter	6:	Animations	and	Effects	 185
jQuery Effects . 185

Basic Showing and Hiding . 187
Fading Elements In and Out . 187
Sliding Elements . 188

viii table of contents

Tutorial: Login Slider . 190
The Programming . 191

Animations . 192
Easing . 194

Performing an Action After an Effect Is Completed . 196
Tutorial: Animated Dashboard . 198

The Programming . 200

Part Three: Building Web Page Features
Chapter	7:	Improving	Your	Images	 207

Swapping Images . 207
Changing an Image’s src Attribute . 208
Preloading Images . 209
Rollover Images. 210

Tutorial: Adding Rollover Images . 211
Overview of the Task . 212
The Programming . 213

Tutorial: Photo Gallery with Effects . 216
Overview of Task . 217
The Programming . 218

Advanced Gallery with jQuery FancyBox . 222
The Basics . 223
Creating a Gallery of Images . 225
Customizing FancyBox . 226

Tutorial: FancyBox Photo Gallery . 231

Chapter	8:	Improving	Navigation	 235
Some Link Basics . 235

Selecting Links with JavaScript . 235
Determining a Link’s Destination . 236
Don’t Follow That Link . 237

Opening External Links in a New Window . 238
Creating New Windows . 240

Window Properties . 241
Opening Pages in a Window on the Page . 245

Tutorial: Opening a Page Within a Page . 248
Basic, Animated Navigation Bar . 249

The HTML . 250
The CSS . 252
The JavaScript . 253
The Tutorial . 254

ixtable of contents

Chapter	9:	Enhancing	Web	Forms 257
Understanding Forms . 257

Selecting Form Elements . 259
Getting and Setting the Value of a Form Element 261
Determining Whether Buttons and Boxes Are Checked 262
Form Events. 263

Adding Smarts to Your Forms . 268
Focusing the First Field in a Form . 268
Disabling and Enabling Fields . 269
Hiding and Showing Form Options . 271

Tutorial: Basic Form Enhancements . 272
Focusing a Field . 273
Disabling Form Fields . 273
Hiding Form Fields . 276

Form Validation . 278
jQuery Validation Plug-in . 280
Basic Validation . 281
Advanced Validation . 284
Styling Error Messages . 290

Validation Tutorial . 291
Basic Validation . 292
Advanced Validation . 294
Validating Checkboxes and Radio Buttons . 297
Formatting the Error Messages . 299

Chapter	10:	Expanding	Your	Interface	 301
Organizing Information in Tabbed Panels . 301

The HTML . 302
The CSS . 304
The JavaScript . 306
Tabbed Panels Tutorial . 307

Adding a Content Slider to Your Site . 312
Using AnythingSlider . 313
AnythingSlider Tutorial . 314
Customizing the Slider Appearance . 316
Customizing the Slider Behavior . 318

Determining the Size and Position of Page Elements 319
Determining the Height and Width of Elements . 319
Determining the Position of Elements on a Page 322
Determining a Page’s Scrolling Position . 324

Adding Tooltips . 326
The HTML . 326
The CSS . 328
The JavaScript . 328
Tooltips Tutorial . 329

x table of contents

Part Four: Ajax: Communication with the Web Server
Chapter	11:	Introducing	Ajax	. 341

What Is Ajax? . 342
Ajax: The Basics . 343

Pieces of the Puzzle . 344
Talking to the Web Server . 346

Ajax the jQuery Way . 349
Using the load() Function . 349
Tutorial: The load() Function . 352
The get() and post() Functions . 356
Formatting Data to Send to the Server . 357
Processing Data from the Server . 360
Handling Errors . 364
Tutorial: Using the get() Function . 365

JSON . 370
Accessing JSON Data . 372
Complex JSON Objects . 373

Chapter	12:	Flickr	and	Google	Maps	 377
Introducing JSONP . 377
Adding a Flickr Feed to Your Site . 378

Constructing the URL . 379
Using the $.getJSON() Function . 381
Understanding the Flickr JSON Feed . 381

Tutorial: Adding Flickr Images to Your Site . 383
Adding Google Maps to Your Site . 387

Setting a Location for the Map . 390
Other GoMap Options . 391
Adding Markers . 393
Adding Information Windows to Markers . 397
GoMap Tutorial . 397

Part Five: Tips, Tricks, and Troubleshooting
Chapter	13:	Getting	the	Most	from	jQuery	 403

Useful jQuery Tips and Information . 403
$() Is the Same as jQuery() . 403
Saving Selections Into Variables . 404
Adding Content as Few Times as Possible . 405
Optimizing Your Selectors . 406

Using the jQuery Docs . 407
Reading a Page on the jQuery Docs Site . 411

Traversing the DOM . 413
More Functions For Manipulating HTML . 419
Advanced Event Handling . 421

xitable of contents

Chapter	14:	Going	Further	with	Java	Script	 425
Working with Strings . 425

Determining the Length of a String . 425
Changing the Case of a String . 426
Searching a String: indexOf() Technique. 427
Extracting Part of a String with slice() . 428

Finding Patterns in Strings . 430
Creating and Using a Basic Regular Expression . 431
Building a Regular Expression . 432
Grouping Parts of a Pattern . 435
Useful Regular Expressions . 436
Matching a Pattern . 441
Replacing Text. 443
Trying Out Regular Expressions . 444

Working with Numbers . 445
Changing a String to a Number . 445
Testing for Numbers . 447
Rounding Numbers . 448
Formatting Currency Values . 448
Creating a Random Number . 449

Dates and Times . 450
Getting the Month . 451
Getting the Day of the Week . 452
Getting the Time . 452
Creating a Date Other Than Today . 456

Putting It All Together . 457
Using External JavaScript Files . 457

Writing More Efficient JavaScript . 459
Putting Preferences in Variables . 460
Ternary Operator . 461
The Switch Statement . 462

Creating Fast-Loading JavaScript . 465

Chapter	15:	Troubleshooting	and	Debugging 467
Top JavaScript Programming Mistakes . 467

Non-Closed Pairs . 467
Quotation Marks . 472
Using Reserved Words . 472
Single Equals in Conditional Statements . 473
Case-Sensitivity . 473
Incorrect Path to External JavaScript File . 474
Incorrect Paths Within External JavaScript Files . 474
Disappearing Variables and Functions . 476

Debugging with Firebug . 477
Installing and Turning On Firebug . 477
Viewing Errors with Firebug . 478

xii table of contents

Using console.log() to Track Script Progress . 479
Tutorial: Using the Firebug Console . 481
More Powerful Debugging . 485

Debugging Tutorial . 489

Appendix	A:	JavaScript	Resources	 497

Index	 . 503

xiii

 The Missing Credits

About the Author
David Sawyer McFarland is president of Sawyer McFarland
Media, Inc., a web development and training company in
Portland, Oregon. He’s been building websites since 1995,
when he designed his first site—an online magazine for
communication professionals. He’s served as webmaster at
the University of California at Berkeley and the Berkeley
Multimedia Research Center, and oversaw a complete CSS-
driven redesign of Macworld.com.

In addition to building websites, David is also a writer, trainer, and instructor. He’s
taught web design at UC Berkeley Graduate School of Journalism, the Center for
Electronic Art, the Academy of Art College, Ex’Pressions Center for New Media,
and Portland State University. He’s written articles about the web for Practical Web
Design, MX Developer’s Journal, Macworld magazine, and CreativePro.com.

He welcomes feedback about this book by email: missing@sawmac.com. (If you’re
seeking technical help, however, please refer to the sources listed in Appendix A.)

About the Creative Team
Nan Barber (editor) has worked with the Missing Manual series since its inception—
long enough to remember HyperCard stacks.

Holly Bauer (production editor) lives in Ye Olde Cambridge, MA. She’s a produc-
tion editor by day and an avid home cook, prolific DIYer, and mid-century modern
design enthusiast by evening/weekend. Email: holly@oreilly.com.

xiv the missing credits

Acknowledgements

Carla Spoon (proofreader) is a freelance writer and copy editor. An avid runner, she
works and feeds her tech gadget addiction from her home office in the shadow of
Mount Rainier. Email: carla_spoon@comcast.net.

Angela Howard (indexer) has been indexing for more than 10 years, mostly for
computer books, but occasionally for books on other topics, such as travel, alterna-
tive medicine, and leopard geckos. She lives in California with her husband, daugh-
ter, and two cats.

Acknowledgements
Many thanks to all those who helped with this book, including Shelley Powers and
Steve Suehring, whose watchful eyes saved me from potentially embarrassing mis-
takes. Thanks also to my many students at Portland State University who have sat
through my long JavaScript lectures and struggled through my programming as-
signments—especially the members of Team Futzbit (Combination Pizza Hut and
Taco Bell) for testing the tutorials: Julia Hall, Amber Brucker, Kevin Brown, Josh
Elliott, Tracy O’Connor, and Blake Womack. Also, we all owe a big debt of grati-
tude to John Resig and the jQuery team for creating the best tool yet for making
JavaScript fun.

Finally, thanks to David Pogue for getting me started; Nan Barber for making my
writing sharper and clearer; my wife, Scholle, for putting up with an author’s cranki-
ness; and thanks to my kids, Graham and Kate, because they’re just awesome.

The Missing Manual Series
Missing Manuals are witty, superbly written guides to computer products that don’t
come with printed manuals (which is just about all of them). Each book features
a handcrafted index and cross-references to specific page numbers (not just “see
Chapter 14”).

Recent and upcoming titles include:

• Access 2010: The Missing Manual by Matthew MacDonald

• Buying a Home: The Missing Manual by Nancy Conner

• CSS: The Missing Manual, Second Edition, by David Sawyer McFarland

• Creating a Website: The Missing Manual, Third Edition, by Matthew Mac Donald

• David Pogue’s Digital Photography: The Missing Manual by David Pogue

• Dreamweaver CS5.5: The Missing Manual by David Sawyer McFarland

• Droid X2: The Missing Manual by Preston Gralla

• Droid 2: The Missing Manual by Preston Gralla

• Excel 2010: The Missing Manual by Matthew MacDonald

xvthe missing credits

The Missing Manual
Series

• Facebook: The Missing Manual, Third Edition, by E.A. Vander Veer

• FileMaker Pro 11: The Missing Manual by Susan Prosser and Stuart Gripman

• Flash CS5.5: The Missing Manual by Chris Grover

• Galaxy Tab: The Missing Manual by Preston Gralla

• Google Apps: The Missing Manual by Nancy Conner

• Google SketchUp: The Missing Manual by Chris Grover

• The Internet: The Missing Manual by David Pogue and J.D. Biersdorfer

• iMovie ’11 & iDVD: The Missing Manual by David Pogue and Aaron Miller

• iPad 2: The Missing Manual by J.D. Biersdorfer

• iPhone: The Missing Manual, Fourth Edition, by David Pogue

• iPhone App Development: The Missing Manual by Craig Hockenberry

• iPhoto ’11: The Missing Manual by David Pogue and Lesa Snider

• iPod: The Missing Manual, Ninth Edition, by J.D. Biersdorfer and David Pogue

• Living Green: The Missing Manual by Nancy Conner

• Mac OS X Snow Leopard: The Missing Manual by David Pogue

• Mac OS X Lion: The Missing Manual by David Pogue

• Microsoft Project 2010: The Missing Manual by Bonnie Biafore

• Motorola Xoom: The Missing Manual by Preston Gralla

• Netbooks: The Missing Manual by J.D. Biersdorfer

• Office 2010: The Missing Manual by Nancy Connor, Chris Grover, and Matthew
MacDonald

• Office 2011 for Macintosh: The Missing Manual by Chris Grover

• Palm Pre: The Missing Manual by Ed Baig

• Personal Investing: The Missing Manual by Bonnie Biafore

• Photoshop CS5.5: The Missing Manual by Lesa Snider

• Photoshop Elements 10: The Missing Manual by Barbara Brundage

• PowerPoint 2007: The Missing Manual by E.A. Vander Veer

• Premiere Elements 8: The Missing Manual by Chris Grover

• QuickBase: The Missing Manual by Nancy Conner

• QuickBooks 2011: The Missing Manual by Bonnie Biafore

• QuickBooks 2012: The Missing Manual by Bonnie Biafore

xvi the missing credits

The Missing Manual
Series

• Switching to the Mac: The Missing Manual, Snow Leopard Edition, by David Pogue

• Switching to the Mac: The Missing Manual, Lion Edition, by David Pogue

• Wikipedia: The Missing Manual by John Broughton

• Windows Vista: The Missing Manual by David Pogue

• Windows 7: The Missing Manual by David Pogue

• Word 2007: The Missing Manual by Chris Grover

• Your Body: The Missing Manual by Matthew MacDonald

• Your Brain: The Missing Manual by Matthew MacDonald

• Your Money: The Missing Manual by J. D. Roth

1

 Introduction

The Web was a pretty boring place in its early days. Web pages were constructed
from plain old HTML, so they could display information, and that was about
all. Folks would click a link and then wait for a new web page to load. That

was about as interactive as it got.

These days, most websites are almost as responsive as the programs on a desktop
computer, reacting immediately to every mouse click. And it’s all thanks to the subjects
of this book—JavaScript and its sidekick, jQuery.

What Is JavaScript?
JavaScript is a programming language that lets you supercharge your HTML with
animation, interactivity, and dynamic visual effects.

JavaScript can make web pages more useful by supplying immediate feedback. For
example, a JavaScript-powered shopping cart page can instantly display a total cost,
with tax and shipping, the moment a visitor selects a product to buy. JavaScript can
produce an error message immediately after someone attempts to submit a web form
that’s missing necessary information.

JavaScript also lets you create fun, dynamic, and interactive interfaces. For example,
with JavaScript, you can transform a static page of thumbnail images into an animated
slideshow (as you’ll learn how to do on page 314). Or you can do something more
subtle like stuff more information on a page without making it seem crowded by
organizing content into bite-size panels that visitors can access with a simple click of
the mouse (page 301). Or add something useful and attractive, like pop-up tooltips
that provide supplemental information for items on your web page (page 326).

2 javascript & jquery: the missing manual

What Is JavaScript?

Another one of JavaScript’s main selling points is its immediacy. It lets web pages
respond instantly to actions like clicking a link, filling out a form, or merely moving
the mouse around the screen. JavaScript doesn’t suffer from the frustrating delay
associated with server-side programming languages like PHP, which rely on com-
munication between the web browser and the web server. Because it doesn’t rely on
constantly loading and reloading web pages, JavaScript lets you create web pages that
feel and act more like desktop programs than web pages.

If you’ve visited Google Maps (http://maps.google.com), you’ve seen JavaScript in ac-
tion. Google Maps lets you view a map of your town (or pretty much anywhere else for
that matter), zoom in to get a detailed view of streets and bus stops, or zoom out to get
a birds-eye view of how to get across town, the state, or the nation. While there were
plenty of map sites before Google, they always required reloading multiple web pages
(usually a slow process) to get to the information you wanted. Google Maps, on the
other hand, works without page refreshes—it responds immediately to your choices.

The programs you create with JavaScript can range from the really simple (like pop-
ping up a new browser window with a web page in it) to full-blown web applications
like Google Docs (http://docs.google.com), which let you create presentations, edit
documents, and create spreadsheets using your web browser with the feel of a pro-
gram running directly on your computer.

A	Bit	of	History
Invented by Netscape back in 1995, JavaScript is nearly as old as the web itself. While
JavaScript is well respected today, it has a somewhat checkered past. It used to be
considered a hobbyist’s programming language, used for adding less-than-useful
effects such as messages that scroll across the bottom of a web browser’s status bar
like a stock-ticker, or animated butterflies following mouse movements around the
page. In the early days of JavaScript, it was easy to find thousands of free JavaScript
programs (also called scripts) online, but many of those scripts didn’t work in all web
browsers, and at times even crashed browsers.

Note: JavaScript has nothing to do with the Java programming language. JavaScript was originally
named LiveScript, but the marketing folks at Netscape decided they’d get more publicity if they tried to
associate the language with the then-hot Java. Don’t make the mistake of confusing the two…especially
at a job interview!

In the early days, JavaScript also suffered from incompatibilities between the two
prominent browsers, Netscape Navigator and Internet Explorer. Because Netscape
and Microsoft tried to outdo each other’s browsers by adding newer and (ostensibly)
better features, the two browsers often acted in very different ways, making it difficult
to create JavaScript programs that worked well in both.

3 introduction

What Is jQuery?

Note: After Netscape introduced JavaScript, Microsoft introduced jScript, their own version of JavaScript
included with Internet Explorer.

Fortunately the worst of those days is nearly gone and contemporary browsers like
Firefox, Safari, Chrome, Opera, and Internet Explorer 9 have standardized much of
the way they handle JavaScript, making it easier to write JavaScript programs that
work for most everyone. (There are still a few incompatibilities among current web
browsers, so you’ll need to learn a few tricks for dealing with cross-browser problems.
You’ll learn how to overcome browser incompatibilities in this book.)

In the past several years, JavaScript has undergone a rebirth, fueled by high-profile
websites like Google, Yahoo, and Flickr, which use JavaScript extensively to create
interactive web applications. There’s never been a better time to learn JavaScript.
With the wealth of knowledge and the quality of scripts being written, you can add
sophisticated interaction to your website—even if you’re a beginner.

Note: JavaScript is also known by the name ECMAScript. ECMAScript is the “official” JavaScript specifica-
tion, which is developed and maintained by an international standards organization called Ecma Interna-
tional: http://www.ecmascript.org/

JavaScript	Is	Everywhere
JavaScript isn’t just for web pages, either. It’s proven to be such a useful programming
language that if you learn JavaScript you can create Yahoo Widgets and Apple’s
Dashboard Widgets, write programs for the iPhone, and tap into the scriptable fea-
tures of many Adobe programs like Acrobat, Photoshop, Illustrator, and Dream-
weaver. In fact, Dreamweaver has always offered clever JavaScript programmers a
way to add their own commands to the program.

In addition, the programming language for Flash—ActionScript—is based on Java-
Script, so if you learn the basics of JavaScript, you’ll be well prepared to learn Flash
programming.

What Is jQuery?
JavaScript has one embarrassing little secret: writing it is hard. While it’s simpler
than many other programming languages, JavaScript is still a programming lan-
guage. And many people, including web designers, find programming difficult. To
complicate matters further, different web browsers understand JavaScript differ-
ently, so a program that works in, say, Chrome may be completely unresponsive in
Internet Explorer 9. This common situation can cost many hours of testing on dif-
ferent machines and different browsers to make sure a program works correctly for
your site’s entire audience.

4 javascript & jquery: the missing manual

HTML: The
Barebones Structure

That’s where jQuery comes in. jQuery is a JavaScript library intended to make
Java Script programming easier and more fun. A JavaScript library is a complex
JavaScript program that both simplifies difficult tasks and solves cross-browser
problems. In other words, jQuery solves the two biggest headaches with JavaScript—
complexity and the finicky nature of different web browsers.

jQuery is a web designer’s secret weapon in the battle of JavaScript programming.
With jQuery, you can accomplish tasks in a single line of code that would other-
wise take hundreds of lines of programming and many hours of browser testing to
achieve with your own JavaScript code. In fact, an in-depth book solely about Java-
Script would be at least twice as thick as the one you’re holding; and, when you were
done reading it (if you could manage to finish it), you wouldn’t be able to do half of
the things you can accomplish with just a little bit of jQuery knowledge.

That’s why most of this book is about jQuery. It lets you do so much, so easily. An-
other great thing about jQuery is that you can add advanced features to your website
with thousands of easy-to-use jQuery plug-ins. For example, the FancyBox plug-in
(which you’ll meet on page 222) lets you take a simple page of thumbnail graphics
and turn it into an interactive slideshow—all with a single line of programming!

Unsurprisingly, jQuery is used on millions of websites (http://trends.builtwith.com/
javascript/JQuery). It’s baked right into popular content management systems like
Drupal and WordPress. You can even find job listings for “jQuery Programmers”
with no mention of JavaScript. When you learn jQuery, you join a large community
of fellow web designers and programmers who use a simpler and more powerful
approach to creating interactive, powerful web pages.

HTML: The Barebones Structure
JavaScript isn’t much good without the two other pillars of web design—HTML and
CSS. Many programmers talk about the three languages as forming the “layers” of
a web page: HTML provides the structural layer, organizing content like pictures
and words in a meaningful way; CSS (Cascading Style Sheets) provides the presen-
tational layer, making the content in the HTML look good; and JavaScript adds a
behavioral layer, bringing a web page to life so it interacts with web visitors.

In other words, to master JavaScript, you need to have a good understanding of both
HTML and CSS.

Note: For a full-fledged introduction to HTML and CSS, check out Head First HTML with CSS and XHTML
by Elisabeth Freeman and Eric Freeman. For an in-depth presentation of the tricky subject of Cascading
Style Sheets, pick up a copy of CSS: The Missing Manual by David Sawyer McFarland (both O’Reilly).

HTML (Hypertext Markup Language) uses simple commands called tags to define the
various parts of a web page. For example, this HTML code creates a simple web page:

5 introduction

HTML: The
Barebones Structure

<!DOCTYPE html>
<html>
<head>
<meta charset=utf-8>
<title>Hey, I am the title of this web page.</title>
</head>
<body>
Hey, I am some body text on this web page.
</body>
</html>

It may not be exciting, but this example has all the basic elements a web page needs.
This page begins with a single line—the document type declaration, or doctype
for short—that states what type of document the page is and which standards it
conforms to. HTML actually comes in different versions, and you use a different
doctype with each. In this example, the doctype is for HTML5; the doctype for an
HTML 4.01 or XHTML document is longer and also includes a URL that points the
web browser to a file on the Internet that contains definitions for that type of file.

In essence, the doctype tells the web browser how to display the page. The doc-
type can even affect how CSS and JavaScript work. With an incorrect or missing
doctype, you may end up banging your head against a wall as you discover lots of
cross-browser differences with your scripts. If for no other reason, always include a
doctype in your HTML.

There are five types of HTML commonly used today: HTML 4.01 Transitional,
HTML 4.01 Strict, XHTML 1.0 Transitional, XHTML 1.0 Strict, and HTML5 (the
new kid on the block). All five are very much alike, with just slight differences in
how tags are written and which tags and attributes are allowed. Most web page
editing programs add an appropriate doctype when you create a new web page, but
if you want examples of how each is written, you can find templates for the different
types of pages at www.webstandards.org/learn/reference/templates.

It doesn’t really matter which type of HTML you use. All current web browsers un-
derstand each of the five common doctypes and can display web pages using any of
the four document types without problem. Which doctype you use isn’t nearly as
important as making sure you’ve correctly written your HTML tags—a task that’s
helped by validating the page, as described in the box on page 7.

Note: XHTML was once heralded as the next big thing for web designers. Although you’ll still find people
who think you should only use XHTML, the winds of change have turned. The World Wide Web Consor-
tium (W3C) has stopped development of XHTML in favor of HTML5. You can learn more about HTML5 by
picking up a copy of HTML5: The Missing Manual by Matthew MacDonald or HTML5: Up and Running by
Mark Pilgrim (both from O'Reilly).

How	HTML	Tags	Work
In the example on the previous page, as in the HTML code of any web page, you’ll
notice that most commands appear in pairs that surround a block of text or other

6 javascript & jquery: the missing manual

HTML: The
Barebones Structure

commands. Sandwiched between brackets, these tags are instructions that tell a web
browser how to display the web page. Tags are the “markup” part of the Hypertext
Markup Language.

The starting (opening) tag of each pair tells the browser where the instruction begins,
and the ending tag tells it where the instruction ends. Ending or closing tags always
include a forward slash (/) after the first bracket symbol (<). For example, the tag
<p> marks the start of a paragraph, while </p> marks its end.

For a web page to work correctly, you must include at least these three tags:

• The <html> tag appears once at the beginning of a web page (after the doctype)
and again (with an added slash) at the end. This tag tells a web browser that the
information contained in this document is written in HTML, as opposed to
some other language. All of the contents of a page, including other tags, appear
between the opening and closing <html> tags.
If you were to think of a web page as a tree, the <html> tag would be its trunk.
Springing from the trunk are two branches that represent the two main parts of
any web page—the head and the body.

• The head of a web page, surrounded by <head> tags, contains the title of the
page. It may also provide other, invisible information (such as search keywords)
that browsers and web search engines can exploit.
In addition, the head can contain information that’s used by the web browser for
displaying the web page and for adding interactivity. You put Cascading Style
Sheets, for example, in the head of the document. The head of the document is
also where you often include JavaScript programming and links to JavaScript files.

• The body of a web page, as set apart by its surrounding <body> tags, contains all
the information that appears inside a browser window: headlines, text, pictures,
and so on.

Within the <body> tag, you commonly find tags like the following:

• You tell a web browser where a paragraph of text begins with a <p> (opening
paragraph tag), and where it ends with a </p> (closing paragraph tag).

• The tag emphasizes text. If you surround some text with it and its part-
ner tag, , you get boldface type. The HTML snippet Warning!
 tells a web browser to display the word “Warning!” in bold type.

• The <a> tag, or anchor tag, creates a hyperlink in a web page. When clicked, a
hyperlink—or link—can lead anywhere on the web. You tell the browser where
the link points by putting a web address inside the <a> tags. For instance, you
might type Click here!.
The browser knows that when your visitor clicks the words “Click here!” it
should go to the Missing Manual website. The href part of the tag is called an at-
tribute and the URL (the Uniform Resource Locator or web address) is the value.
In this example, http://www.missingmanuals.com is the value of the href attribute.

7 introduction

CSS: Adding Style to
Web Pages

UP TO SPEED

Validating Web Pages
As mentioned on page 5, a web page’s doctype identifies
which type of HTML or XHTML you used to create the web
page. The rules differ subtly depending on type: For ex-
ample, unlike HTML 4.01, XHTML doesn’t let you have an
unclosed <p> tag, and requires that all tag names and at-
tributes be lowercase (<a> not <A>, for example). HTML5
includes new tags and lets you use either HTML or XHTML
syntax. Because different rules apply to each variant of
HTML, you should always validate your web pages.

An HTML validator is a program that makes sure a web
page is written correctly. It checks the page’s doctype
and then analyzes the code in the page to see whether it
matches the rules defined by that doctype. For example,
the validator flags mistakes like a misspelled tag name or
an unclosed tag. The World Wide Web Consortium (W3C),
the organization that’s responsible for many of the technol-
ogies used on the web, has a free online validator at http://
validator.w3.org. You can copy your HTML and paste it into
a web form, upload a web page, or point the validator to an
already existing page on the web; the validator then ana-
lyzes the HTML and reports back whether the page is valid

or not. If there are any errors, the validator tells you what
the error is and on which line of the HTML file it occurs.

If you use Firefox, you can download the HTML Valida-
tor plug-in from http://users.skynet.be/mgueury/mozilla.
This plug-in lets you validate a page directly in your web
browser; just open a page (even a page directly off of your
computer) and the validator will point out any errors in
your HTML. There’s a similar plug-in for Safari, called Safari
Validator, which you can find at http://zappatic.net/projects/
safarivalidator.

Valid HTML isn’t just good form, it also helps to make sure
your JavaScript programs work correctly. A lot of JavaScript
involves manipulating a web page’s HTML: identifying a
particular form field, for example, or placing new HTML
(like an error message) in a particular spot. In order for
JavaScript to access and manipulate a web page, the HTML
must be in proper working order. Forgetting to close a tag,
using the same ID name more than once, or improperly
nesting your HTML tags can make your JavaScript code
behave erratically or not at all.

CSS: Adding Style to Web Pages
At the beginning of the Web, HTML was the only language you needed to know. You
could build pages with colorful text and graphics and make words jump out using
different sizes, fonts, and colors. But today, web designers turn to Cascading Style
Sheets to add visual sophistication to their pages. CSS is a formatting language that
lets you make text look good, build complex page layouts, and generally add style
to your site.

Think of HTML as merely the language you use to structure a page. It helps iden-
tify the stuff you want the world to know about. Tags like <h1> and <h2> denote
headlines and assign them relative importance: A heading 1 is more important than
a heading 2. The <p> tag indicates a basic paragraph of information. Other tags
provide further structural clues: for example, a tag identifies a bulleted list (to
make a list of recipe ingredients more intelligible, for example).

CSS, on the other hand, adds design flair to well-organized HTML content, making
it more beautiful and easier to read. Essentially, a CSS style is just a rule that tells a
web browser how to display a particular element on a page. For example, you can

http://zappatic.net/projects/safarivalidator
http://zappatic.net/projects/safarivalidator

8 javascript & jquery: the missing manual

CSS: Adding Style to
Web Pages

create a CSS rule to make all <h1> tags appear 36 pixels tall, in the Verdana font, and
in orange. CSS can do more powerful stuff, too, like add borders, change margins,
and even control the exact placement of a page element.

When it comes to JavaScript, some of the most valuable changes you make to a page
involve CSS. You can use JavaScript to add or remove a CSS style from an HTML
tag, or dynamically change CSS properties based on a visitor’s input or mouse clicks.
You can even animate from the properties of one style to the properties of another
(say, animating a background color changing from yellow to red). For example, you
can make a page element appear or disappear simply by changing the CSS display
property. To animate an item across the screen, you can change the CSS position
properties dynamically using JavaScript.

Anatomy	of	a	Style
A single style that defines the look of one element is a pretty basic beast. It’s essentially
a rule that tells a web browser how to format something—turn a headline blue, draw
a red border around a photo, or create a 150-pixel-wide sidebar box to hold a list of
links. If a style could talk, it would say something like, “Hey, Browser, make this look
like that.” A style is, in fact, made up of two elements: the web page element that the
browser formats (the selector) and the actual formatting instructions (the declaration
block). For example, a selector can be a headline, a paragraph of text, a photo, and so
on. Declaration blocks can turn that text blue, add a red border around a paragraph,
position the photo in the center of the page—the possibilities are endless.

Note: Technical types often follow the lead of the W3C and call CSS styles rules. This book uses the terms
“style” and “rule” interchangeably.

Of course, CSS styles can’t communicate in nice, clear English. They have their own
language. For example, to set a standard font color and font size for all paragraphs
on a web page, you’d write the following:

p { color: red; font-size: 1.5em; }

This style simply says, “Make the text in all paragraphs—marked with <p> tags—red
and 1.5 ems tall.” (An em is a unit or measurement that’s based on a browser’s nor-
mal text size.) As Figure I-1 illustrates, even a simple style like this example contains
several elements:

• Selector. The selector tells a web browser which element or elements on a page
to style—like a headline, paragraph, image, or link. In Figure I-1, the selec-
tor (p) refers to the <p> tag, which makes web browsers format all <p> tags
using the formatting directions in this style. With the wide range of selectors
that CSS offers and a little creativity, you can gain fine control of your pages’
formatting. (Selectors are an important part of using jQuery, so you’ll find a
detailed discussion of them starting on page 129.)

9 introduction

CSS: Adding Style to
Web Pages

• Declaration Block. The code following the selector includes all the formatting
options you want to apply to the selector. The block begins with an opening
brace ({) and ends with a closing brace (}).

• Declaration. Between the opening and closing braces of a declaration, you add
one or more declarations, or formatting instructions. Every declaration has two
parts, a property and a value, and ends with a semicolon.

• Property. CSS offers a wide range of formatting options, called properties. A
property is a word—or a few hyphenated words—indicating a certain style
effect. Most properties have straightforward names like font-size, margin-top,
and background-color. For example, the background-color property sets—you
guessed it—a background color.

Note: If you need to brush up on your CSS, grab a copy of CSS: The Missing Manual.

• Value. Finally, you get to express your creative genius by assigning a value to
a CSS property—by making a background blue, red, purple, or chartreuse, for
example. Different CSS properties require specific types of values—a color (like
red, or #FF0000), a length (like 18px, 2in, or 5em), a URL (like images/back-
ground.gif), or a specific keyword (like top, center, or bottom).

Figure I-1: A style (or rule) is made of
two main parts: a selector, which tells
web browsers what to format, and a dec-
laration block, which lists the formatting
instructions that the browsers use to style
the selector.

p { color:red; font-size:1.5em; }

Declaration Declaration
Declaration block

Property Value Property Value

Selector

You don’t need to write a style on a single line as pictured in Figure I-1. Many styles
have multiple formatting properties, so you can make them easier to read by break-
ing them up into multiple lines. For example, you may want to put the selector and
opening brace on the first line, each declaration on its own line, and the closing
brace by itself on the last line, like so:

p {
 color: red;
 font-size: 1.5em;
}

It’s also helpful to indent properties, with either a tab or a couple of spaces, to visibly
separate the selector from the declarations, making it easy to tell which is which.
And finally, putting one space between the colon and the property value is optional,
but adds to the readability of the style. In fact, you can put as much white space be-
tween the two as you want. For example color:red, color: red, and color : red all work.

10 javascript & jquery: the missing manual

Software for
JavaScript
Programming

Software for JavaScript Programming
To create web pages made up of HTML, CSS, and JavaScript, you need nothing more
than a basic text editor like Notepad (Windows) or TextEdit (Mac). But after typing
a few hundred lines of JavaScript code, you may want to try a program better suited
to working with web pages. This section lists some common programs, some free
and some you can buy.

Note: There are literally hundreds of tools that can help you create web pages and write JavaScript
programs, so the following is by no means a complete list. Think of it as a greatest-hits tour of the most
popular programs that JavaScript fans are using today.

Free	Programs
There are plenty of free programs out there for editing web pages and style sheets.
If you’re still using Notepad or TextEdit, give one of these a try. Here’s a short list to
get you started:

• Notepad++ (Windows, http://notepad-plus-plus.org) is a coder’s friend. It high-
lights the syntax of JavaScript and HTML code, and lets you save macros and
assign keyboard shortcuts to them so you can automate the process of inserting
the code snippets you use most.

• HTML-Kit (Windows, www.chami.com/html-kit) is a powerful HTML/XHTML
editor that includes lots of useful features, like the ability to preview a web page
directly in the program (so you don’t have to switch back and forth between
browser and editor), shortcuts for adding HTML tags, and a lot more.

• CoffeeCup Free HTML Editor (Windows, www.coffeecup.com/free-editor) is
the free version of the commercial ($49) CoffeeCup HTML editor.

• TextWrangler (Mac, www.barebones.com/products/textwrangler) is free software
that’s actually a pared-down version of BBEdit, the sophisticated, well-known
text editor for the Mac. TextWrangler doesn’t have all of BBEdit’s built-in HTML
tools, but it does include syntax-coloring (highlighting tags and properties in
different colors so it’s easy to scan a page and identify its parts), FTP support (so
you can upload files to a web server), and more.

• Eclipse (Windows, Linux, Mac; www.eclipse.org) is a free, popular choice
amongst Java Developers, but includes tools for working with HTML, CSS,
and JavaScript. A version specifically for JavaScript developers is also available
(www.eclipse.org/downloads/packages/eclipse-ide-javascript-web-developers/
indigor), as well as Eclipse plug-ins to add autocomplete for jQuery (http://
marketplace.eclipse.org/category/free-tagging/jquery).

• Aptana Studio (Windows, Linux, Mac; www.aptana.org) is a powerful, free
coding environment with tools for working with HTML, CSS, JavaScript, PHP,
and Ruby on Rails.

http://marketplace.eclipse.org/category/free-tagging/jquery
http://marketplace.eclipse.org/category/free-tagging/jquery

11 introduction

About This Book

Commercial	Software
Commercial website development programs range from inexpensive text editors to
complete website construction tools with all the bells and whistles:

• EditPlus (Windows, www.editplus.com) is an inexpensive ($35) text editor that
includes syntax-coloring, FTP, auto-completion, and other wrist-saving features.

• CoffeeCup (Windows, www.coffeecup.com) is a combination text and visual
editor ($49). You can either write straight HTML code or use a visual interface
to build your pages.

• textMate (Mac, http://macromates.com) is a darling of Mac programmers. This
text editor ($57) includes many timesaving features for JavaScript programmers,
like “auto-paired characters,” which automatically plops in the second character
of a pair of punctuation marks (for example, the program automatically inserts
a closing parenthesis after you type an opening parenthesis).

• BBEdit (Mac, www.barebones.com/products/bbedit). This much-loved Mac text
editor ($99.99) has plenty of tools for working with HTML, XHTML, CSS,
JavaScript, and more. It includes many useful web building tools and shortcuts.

• Dreamweaver (Mac and Windows, www.adobe.com/products/dreamweaver.html)
is a visual web page editor ($399.) It lets you see how your page looks in a web
browser. The program also includes a powerful text editor for writing JavaScript
programs and excellent CSS creation and management tools. Check out Dream-
weaver CS5.5: The Missing Manual for the full skinny on how to use this power-
ful program.

• Expression Web Designer (Windows, www.microsoft.com/expression/products/
StudioWebPro_Overview.aspx) is Microsoft’s entry in the web design field
($149). It includes many professional web design tools, including excellent
CSS features.

About This Book
Unlike a piece of software such as Microsoft Word or Dreamweaver, JavaScript isn’t
a single product developed by a single company. There’s no support department at
JavaScript headquarters writing an easy-to-read manual for the average web de-
veloper. While you’ll find plenty of information on sites like Mozilla.org (see, for
example, https://developer.mozilla.org/en/JavaScript/Reference) or Ecmascript.org
(www.ecmascript.org/docs.php), there’s no definitive source of information on the
JavaScript programming language.

Because there’s no manual for JavaScript, people just learning JavaScript often don’t
know where to begin. And the finer points regarding JavaScript can trip up even
seasoned web pros. The purpose of this book, then, is to serve as the manual that
should have come with JavaScript. In this book’s pages, you’ll find step-by-step
instructions for using JavaScript to create highly interactive web pages.

www.microsoft.com/expression/products/StudioWebPro_Overview.aspx
www.microsoft.com/expression/products/StudioWebPro_Overview.aspx

12 javascript & jquery: the missing manual

About This Book

Likewise, you’ll find good documentation on jQuery at http://docs.jquery.com/
Main_Page. But it’s written by programmers for programmers, and so the explana-
tions are mostly brief and technical. And while jQuery is generally more straightfor-
ward than regular JavaScript programming, this book will teach you fundamental
jQuery principles and techniques so you can start off on the right path when en-
hancing your websites with jQuery.

JavaScript & jQuery: The Missing Manual is designed to accommodate readers who
have some experience building web pages. You’ll need to feel comfortable with HTML
and CSS to get the most from this book, since JavaScript often works closely with
HTML and CSS to achieve its magic. The primary discussions are written for ad-
vanced-beginner or intermediate computer users. But if you’re new to building web
pages, special boxes called Up to Speed provide the introductory information you
need to understand the topic at hand. If you’re an advanced web page jockey, on the
other hand, keep your eye out for similar shaded boxes called Power Users’ Clinic.
They offer more technical tips, tricks, and shortcuts for the experienced computer fan.

Note: This book periodically recommends other books, covering topics that are too specialized or tan-
gential for a manual about using JavaScript. Sometimes the recommended titles are from Missing Manual
series publisher O’Reilly Media—but not always. If there’s a great book out there that’s not part of the
O’Reilly family, we’ll let you know about it.

This	Book’s	Approach	to	JavaScript
JavaScript is a real programming language: It doesn’t work like HTML or CSS, and it
has its own set of (often complicated) rules. It’s not always easy for web designers to
switch gears and start thinking like computer programmers, and there’s no one book
that can teach you everything there is to know about JavaScript.

The goal of JavaScript & jQuery: The Missing Manual isn’t to turn you into the next
great programmer (though it might start you on your way). This book is meant to
familiarize web designers with the ins and outs of JavaScript and then move on to
jQuery so that you can add really useful interactivity to a website as quickly and easily
as possible.

In this book, you’ll learn the basics of JavaScript and programming; but just the
basics won’t make for very exciting web pages. It’s not possible in 500 pages to teach
you everything about JavaScript that you need to know to build sophisticated, inter-
active web pages. Instead, much of this book will cover the wildly popular jQuery
JavaScript library, which, as you’ll soon learn, will liberate you from all of the min-
ute, time-consuming details of creating JavaScript programs that run well across
different browsers.

You’ll learn the basics of JavaScript, and then jump immediately to advanced web
page interactivity with a little help—OK, a lot of help—from jQuery. Think of it this

http://docs.jquery.com/Main_Page
http://docs.jquery.com/Main_Page

13 introduction

About This Book

way: You could build a house by cutting down and milling your own lumber, con-
structing your own windows, doors, and doorframes, manufacturing your own tile,
and so on. That “do it yourself ” approach is common to a lot of JavaScript books.
But who has that kind of time? This book’s approach is more like building a house by
taking advantage of already-built pieces and putting them together using basic skills.
The end result will be a beautiful and functional house built in a fraction of the time
it would take you to learn every step of the process.

About	the	Outline
JavaScript & jQuery: The Missing Manual is divided into five parts, each containing
several chapters:

• Part 1, Getting Started with JavaScript, starts at the very beginning. You’ll learn
the basic building blocks of JavaScript as well as get some helpful tips on com-
puter programming in general. This section teaches you how to add a script to
a web page, store and manipulate information, and add smarts to a program
so it can respond to different situations. You’ll also learn how to communicate
with the browser window, store and read cookies, respond to various events like
mouse clicks and form submissions, and modify the HTML of a web page.

• Part 2, Getting Started with jQuery, introduces the Web’s most popular Java-
Script library, jQuery. Here you’ll learn the basics of this amazing programming
tool that will make you a more productive and capable JavaScript programmer.
You’ll learn how to select and manipulate page elements, add interaction by
making page elements respond to your visitors, and add flashy visual effects
and animations.

• Part 3, Building Web Page Features, provides many real-world examples of
JavaScript in action. You’ll learn how to create pop-up navigation bars and build
an interactive photo gallery. You’ll make your web forms more usable by add-
ing form validation (so visitors can’t submit forms missing information), add a
calendar widget to make selecting dates easy, and change form options based on
selections a web visitor makes. Finally, you’ll create interesting user interfaces
with content sliders, tooltips, and pop-up dialog boxes that look great and func-
tion flawlessly.

• Part 4, Ajax: Communicating with the Web Server, covers the technology that
single-handedly made JavaScript one of the most glamorous web languages to
learn. In this section, you’ll learn how to use JavaScript to communicate with a
web server so your pages can receive information and update themselves based on
information provided by a web server—without having to load a new web page.

Note: You’ll find step-by-step instructions for setting up a web server on your computer so you can take
advantage of the cool technology (discussed in Part 3) on this book’s companion web page. See “Living
Examples” on page 16 for details.

14 javascript & jquery: the missing manual

The Very Basics

• Part 5, Troubleshooting, Tips, and Tricks, takes you past the basics, covering
more complex concepts. You’ll learn more about how to use jQuery effectively,
as well as delve into advanced jQuery functions. This part of the book also helps
you when nothing seems to be working: when your perfectly crafted JavaScript
program just doesn’t seem to do what you want (or worse, it doesn’t work at
all!). You’ll learn the most common errors new programmers make as well as
techniques for discovering and fixing bugs in your programs.

At the end of the book, an appendix provides a detailed list of references to aid you
in your further exploration of the JavaScript programming language.

The Very Basics
To use this book, and indeed to use a computer, you need to know a few basics. This
book assumes that you’re familiar with a few terms and concepts:

• Clicking. This book gives you three kinds of instructions that require you to use
your computer’s mouse or trackpad. To click means to point the arrow cursor at
something on the screen and then—without moving the cursor at all—to press
and release the clicker button on the mouse (or laptop trackpad). To right-click
means to do the same thing with the right mouse button. To double-click, of
course, means to click twice in rapid succession, again without moving the cur-
sor at all. And to drag means to move the cursor while pressing the button.

Tip: If you’re on a Mac and don’t have a right mouse button, you can accomplish the same thing by
pressing the Control key as you click with the one mouse button.

When you’re told to �- click something on the Mac, or Ctrl-click something
on a PC, you click while pressing the � or Ctrl key (both of which are near the
space bar).

• Menus. The menus are the words at the top of your screen or window: File, Edit,
and so on. Click one to make a list of commands appear, as though they’re writ-
ten on a window shade you’ve just pulled down.

• Keyboard shortcuts. If you’re typing along in a burst of creative energy, it’s
sometimes disruptive to have to take your hand off the keyboard, grab the
mouse, and then use a menu (for example, to use the Bold command). That’s
why many experienced computer mavens prefer to trigger menu commands by
pressing certain combinations on the keyboard. For example, in the Firefox
web browser, you can press Ctrl-+ (Windows) or �-+ (Mac) to make text on
a web page get larger (and more readable). When you read an instruction like
“press �-B,” start by pressing the �-key; while it’s down, type the letter B, and
then release both keys.

15 introduction

About the Online
Resources

• Operating-system basics. This book assumes that you know how to open a pro-
gram, surf the web, and download files. You should know how to use the Start
menu (Windows) and the Dock or Apple menu (Macintosh), as well as the
Control Panel (Windows), or System Preferences (Mac OS X).

If you’ve mastered this much information, you have all the technical background
you need to enjoy JavaScript & jQuery: The Missing Manual.

About→These→Arrows
Throughout this book, and throughout the Missing Manual series, you’ll find sen-
tences like this one: “Open the System→Library→Fonts folder.” That’s shorthand for
a much longer instruction that directs you to open three nested folders in sequence,
like this: “On your hard drive, you’ll find a folder called System. Open that. Inside
the System folder window is a folder called Library; double-click it to open it. In-
side that folder is yet another one called Fonts. Double-click to open it, too.”

Similarly, this kind of arrow shorthand helps to simplify the business of choosing
commands in menus, as shown in Figure I-2.

Figure I-2:
In this book, arrow notations help sim-
plify menu instructions. For example,
View→Text Size→Increase is a more
compact way of saying, “From the
View menu, choose Text Size; from the
submenu that then appears, choose
Increase.”

About the Online Resources
This book is designed to get your work onto the web faster and more profession-
ally; it’s only natural, then, that much of the value of this book also lies on the web.
Online, you’ll find example files so you can get some hands-on experience. You can
also communicate with the Missing Manual team and tell us what you love (or hate)
about the book. Head over to www.missingmanuals.com, or go directly to one of the
following sections.

16 javascript & jquery: the missing manual

About the Online
Resources

Living	Examples
As you read the book’s chapters, you’ll encounter a number of living examples—
step-by-step tutorials that you can build yourself, using raw materials (like graphics
and half-completed web pages) that you can download from either www.sawmac
.com/js2e or from this book’s Missing CD page at www.missingmanuals.com/cds. You
might not gain very much from simply reading these step-by-step lessons while re-
laxing in your porch hammock, but if you take the time to work through them at the
computer, you’ll discover that these tutorials give you unprecedented insight into the
way professional designers build web pages.

You’ll also find, in this book’s lessons, the URLs of the finished pages, so that you can
compare your work with the final result. In other words, you won’t just see pictures
of JavaScript code in the pages of the book; you’ll find the actual, working web pages
on the Internet.

Registration	
If you register this book at oreilly.com, you’ll be eligible for special offers—like
discounts on future editions of JavaScript & jQuery: The Missing Manual. Register-
ing takes only a few clicks. To get started, type www.oreilly.com/register into your
browser to hop directly to the Registration page.

Feedback
Got questions? Need more information? Fancy yourself a book reviewer? On our
Feedback page, you can get expert answers to questions that come to you while read-
ing, share your thoughts on this Missing Manual, and find groups for folks who
share your interest in JavaScript and jQuery. To have your say, go to www.missing
manuals.com/feedback.

Errata
In an effort to keep this book as up to date and accurate as possible, each time we
print more copies, we’ll make any confirmed corrections you’ve suggested. We also
note such changes on the book’s website, so you can mark important corrections into
your own copy of the book, if you like. Go to http://tinyurl.com/jsjqtmm to report an
error and view existing corrections.

www.sawmac.com/js2e
www.sawmac.com/js2e
www.missingmanuals.com/feedback
www.missingmanuals.com/feedback

17 introduction

About the Online
Resources

Safari®	Books	Online
Safari® Books Online is an on-demand digital library that lets you
easily search over 7,500 technology and creative reference books
and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library
online. Read books on your cellphone and mobile devices. Access new titles before
they’re available for print, and get exclusive access to manuscripts in development
and post feedback for the authors. Copy and paste code samples, organize your fa-
vorites, download chapters, bookmark key sections, create notes, print out pages,
and benefit from tons of other time-saving features.

1
Part One: Getting Started
with JavaScript
Chapter	1:	Writing	Your	First	JavaScript	Program

Chapter	2:	The	Grammar	of	JavaScript

Chapter	3:	Adding	Logic	and	Control	to	Your	Programs

21

chapter
1

Writing Your First
JavaScript Program

By itself, HTML doesn’t have any smarts: It can’t do math, it can’t figure out if
someone has correctly filled out a form, and it can’t make decisions based on
how a web visitor interacts with it. Basically, HTML lets people read text, look

at pictures, and click links to move to other web pages with more text and pictures.
In order to add intelligence to your web pages so they can respond to your site’s
visitors, you need JavaScript.

JavaScript lets a web page react intelligently. With it, you can create smart web forms
that let visitors know when they’ve forgotten to include necessary information; you
can make elements appear, disappear, or move around a web page (see Figure 1-1);
you can even update the contents of a web page with information retrieved from a
web server—without having to load a new web page. In short, JavaScript lets you
make your websites more engaging and effective.

22 javascript & jquery: the missing manual

Introducing
Programming

Figure 1-1: Java Script
lets web pages respond to
visitors. On Amazon.com,
mousing over the “Gifts
& Wish Lists” link opens
a tab that floats above
the other content on the
page and offers additional
options.

Note: Actually, HTML5 does add some smarts to HTML—including basic form validation. But since not
all browsers support these nifty additions (and because you can do a whole lot more with forms and
JavaScript), you still need JavaScript to build the best, most user-friendly and interactive forms. You can
learn more about HTML5 and web forms in Mark Pilgrim’s HTML5: Up and Running (O’Reilly).

Introducing Programming
For a lot of people, the term “computer programming” conjures up visions of super-
intelligent nerds hunched over keyboards, typing nearly unintelligible gibberish for
hours on end. And, honestly, some programming is like that. Programming can
seem like complex magic that’s well beyond the average mortal. But many program-
ming concepts aren’t difficult to grasp, and as programming languages go, JavaScript
is relatively friendly to nonprogrammers.

Still, JavaScript is more complex than either HTML or CSS, and programming often
is a foreign world to web designers; so one goal of this book is to help you think more
like a programmer. Throughout this book, you’ll learn fundamental programming
concepts that apply whether you’re writing JavaScript, ActionScript, or even writing
a desktop program using C++. More importantly, you’ll learn how to approach a
programming task so you’ll know exactly what you want to do before you start adding
JavaScript to a web page.

Many web designers are immediately struck by the strange symbols and words used
in JavaScript. An average JavaScript program is sprinkled with symbols ({ } [] ; , ()

23chapter 1: writing your first javascript program

Introducing
Programming

!=) and full of unfamiliar words (var, null, else if). It’s like staring at a foreign lan-
guage, and in many ways, learning a programming language is a lot like learning
another language. You need to learn new words, new punctuation, and understand
how to put them together so you can communicate successfully.

In fact, every programming language has its own set of key words and characters,
and its own set of rules for putting those words and characters together—the
language’s syntax. Learning JavaScript’s syntax is like learning the vocabulary and
grammar of another language. You’ll need to memorize the words and rules of the
language (or at least keep this book handy as a reference). When learning to speak
a new language, you quickly realize that placing an accent on the wrong syllable can
make a word unintelligible. Likewise, a simple typo or even a missing punctuation
mark can prevent a JavaScript program from working, or trigger an error in a web
browser. You’ll make plenty of mistakes as you start to learn to program—that’s just
the nature of programming.

UP TO SPEED

The Client Side vs. the Server Side
JavaScript is a client-side language, which (in English)
means that it works inside a web browser. The alternative
type of web programming language is called a server-side
language, which you’ll find in pages built around PHP,
.NET, ASP, ColdFusion, Ruby on Rails, and other web server
technologies. Server-side programming languages, as the
name suggests, run on a web server. They can exhibit a
lot of intelligence by accessing databases, processing credit
cards, and sending email around the globe. The problem
with server-side languages is that they require the web
browser to send requests to the web server, forcing visitors
to wait until a new page arrives with new information.

Client-side languages, on the other hand, can react imme-
diately and change what a visitor sees in his web browser
without the need to download a new page. Content can
appear or disappear, move around the screen, or automati-
cally update based on how a visitor interacts with the page.
This responsiveness lets you create websites that feel more
like desktop programs than static web pages. But JavaScript
isn’t the only client-side technology in town. You can also
use plug-ins to add programming smarts to a web page.
Java applets are one example. These are small programs,
written in the Java programming language, that run in a
web browser. They also tend to start up slowly and have
been known to crash the browser.

Flash is another plug-in based technology that offers so-
phisticated animation, video, sound, and lots of interactive
potential. In fact, it’s sometimes hard to tell if an interactive
web page is using JavaScript or Flash. For example, Google
Maps could also be created in Flash (in fact, Yahoo Maps
was at one time a Flash application, until Yahoo recreated
it using JavaScript). A quick way to tell the difference: Right-
click on the part of the page that you think might be Flash
(the map itself, in this case); if it is, you’ll see a pop-up
menu that includes “About the Flash Player.”

Ajax, which you’ll learn about in Part 4 of this book, brings
both client-side and server-side together. Ajax is a method
for using JavaScript to talk to a server, retrieve informa-
tion from the server, and update the web page without the
need to load a new web page. Google Maps uses this tech-
nique to let you move around a map without forcing you
to load a new web page.

In truth, JavaScript can also be a server-side programming
language. For example, the node.js web server (http://
nodejs.org/) uses JavaScript as a server-side programming
language to connect to a database, access the web server’s
file system, and perform many other tasks on a web server.
This book doesn’t discuss that aspect of JavaScript pro-
gramming, however.

24 javascript & jquery: the missing manual

Introducing
Programming

At first, you’ll probably find JavaScript programming frustrating—you’ll spend a lot
of your time tracking down errors you made when typing the script. Also, you might
find some of the concepts related to programming a bit hard to follow at first. But
don’t worry: If you’ve tried to learn JavaScript in the past and gave up because you
thought it was too hard, this book will help you get past the hurdles that often trip
up folks new to programming. (And if you do have programming experience, this
book will teach you JavaScript’s idiosyncrasies and the unique concepts involved in
programming for web browsers.)

In addition, this book isn’t just about JavaScript—it’s also about jQuery, the world’s
most popular JavaScript library. jQuery makes complex JavaScript programming
easier…much easier. So with a little bit of JavaScript knowledge and the help of
jQuery, you’ll be creating sophisticated, interactive websites in no time.

What’s	a	Computer	Program?
When you add JavaScript to a web page, you’re writing a computer program. Grant-
ed, most JavaScript programs are much simpler than the programs you use to read
email, retouch photographs, and build web pages. But even though JavaScript pro-
grams (also called scripts) are simpler and shorter, they share many of the same
properties of more complicated programs.

In a nutshell, any computer program is a series of steps that are completed in a des-
ignated order. Say you want to display a welcome message using the name of the
person viewing a web page: “Welcome, Bob!” There are several things you’d need to
do to accomplish this task:

1. Ask the visitor’s name.
2. Get the visitor’s response.
3. Print (that is, display) the message on the web page.

While you may never want to print a welcome message on a web page, this example
demonstrates the fundamental process of programming: Determine what you want
to do, then break that task down into each step that’s necessary to get it done. Every
time you want to create a JavaScript program, you must go through the process of
determining the steps needed to achieve your goal. Once you know the steps, you’re
ready to write your program. In other words, you’ll translate your ideas into pro-
gramming code—the words and characters that make the web browser behave how
you want it to.

25chapter 1: writing your first javascript program

How to Add
JavaScript to a Page

FREQUENTLY ASKED QUESTION

Compiled vs. Scripting Languages
JavaScript is called a scripting language. I’ve heard this
term used for other languages like PHP and ColdFusion as
well. What’s a scripting language?

Most of the programs running on your computer are written
using languages that are compiled. Compiling is the process
of creating a file that will run on a computer by translating
the code a programmer writes into instructions that a com-
puter can understand. Once a program is compiled, you
can run it on your computer, and since a compiled program
has been converted directly to instructions a computer un-
derstands, it will run faster than a program written with a
scripting language. Unfortunately, compiling a program is
a time-consuming process: You have to write the program,
compile it, and then test it. If the program doesn’t work, you
have to go through the whole process again.

A scripting language, on the other hand, is only compiled
when an interpreter (another program that can convert the
script into something a computer can understand) reads it.
In the case of JavaScript, the interpreter is built into the web
browser. So when your web browser reads a web page
with a JavaScript program in it, the web browser translates
the JavaScript into something the computer understands.
As a result, a scripting language operates more slowly than
a compiled language, since every time it runs, the program
must be translated for the computer. Scripting languages
are great for web developers: Scripts are generally much
smaller and less complex than desktop programs, so the
lack of speed isn’t as important. In addition, since they
don’t require compiling, creating and testing programs that
use a scripting language is a much faster process.

How to Add JavaScript to a Page
Web browsers are built to understand HTML and CSS and convert those languages
into a visual display on the screen. The part of the web browser that understands
HTML and CSS is called the layout or rendering engine. But most browsers also
have something called a JavaScript interpreter. That’s the part of the browser that
understands JavaScript and can execute the steps of a JavaScript program. Since the
web browser is usually expecting HTML, you must specifically tell the browser when
JavaScript is coming by using the <script> tag.

The <script> tag is regular HTML. It acts like a switch that in effect says “Hey, web
browser, here comes some JavaScript code; you don’t know what to do with it, so
hand it off to the JavaScript interpreter.” When the web browser encounters the clos-
ing </script> tag, it knows it’s reached the end of the JavaScript program and can get
back to its normal duties.

Much of the time, you’ll add the <script> tag in the <head> portion of the web page
like this:

26 javascript & jquery: the missing manual

How to Add
JavaScript to a Page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">
<html>
<head>
<title>My Web Page</title>
<script type="text/javascript">

</script>
</head>

The <script> tag’s type attribute indicates the format and the type of script that fol-
lows. In this case, type=“text/javascript” means the script is regular text (just like
HTML) and that it’s written in JavaScript.

If you’re using HTML5, life is even simpler. You can skip the type attribute entirely:
<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>My Web Page</title>
<script>

</script>
</head>

In fact, web browsers let you leave out the type attribute in HTML 4.01 and XHTML
1.0 files as well—the script will run the same; however, your page won’t validate
correctly without the type attribute (see the box on page 7 for more on validation).
This book uses HTML5 for the doctype, but the JavaScript code will be the same and
work the same for HTML 4.01, and XHTML 1.

You then add your JavaScript code between the opening and closing <script> tags:
<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<head>
<title>My Web Page</title>
<script>
alert('hello world!');
</script>
</head>

You’ll find out what this JavaScript actually does in a moment. For now, turn your
attention to the opening and closing <script> tags. To add a script to your page,
start by inserting these tags. In many cases, you’ll put the <script> tags in the page’s
<head> in order to keep your JavaScript code neatly organized in one area of the
web page.

However, it’s perfectly valid to put <script> tags anywhere inside the HTML of the
page. In fact, as you’ll see later in this chapter, there’s a JavaScript command that lets
you write information directly into a web page. Using that command, you place the
<script> tags in the location on the page (somewhere inside the body) where you
want the script to write its message. It’s even common to put <script> tags just below

27chapter 1: writing your first javascript program

How to Add
JavaScript to a Page

the closing </body> tag—this approach makes sure the page is loaded and the visitor
sees it before running any JavaScript.

External	JavaScript	Files
Using the <script> tag as discussed in the previous section lets you add JavaScript
to a single page. But many times you’ll create scripts that you want to share with all
of the pages on your site. For example, you might use a JavaScript program to add
animated, drop-down navigation menus to a web page. You’ll want that same fancy
navigation bar on every page of your site, but copying and pasting the same Java-
Script code into each page of your site is a really bad idea for several reasons.

First, it’s a lot of work copying and pasting the same code over and over again, espe-
cially if you have a site with hundreds of pages. Second, if you ever decide to change
or enhance the JavaScript code, you’ll need to locate every page using that Java-
Script and update the code. Finally, since all of the code for the JavaScript program
would be located in every web page, each page will be that much larger and slower
to download.

A better approach is to use an external JavaScript file. If you’ve used external CSS
files for your web pages, this technique should feel familiar. An external JavaScript
file is simply a text file that ends with the file extension .js—navigation.js, for ex-
ample. The file only includes JavaScript code and is linked to a web page using the
<script> tag. For example, to add a JavaScript file named navigation.js to your home
page, you might write the following:

<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>My Web Page</title>
<script src="navigation.js"></script>
</head>

The src attribute of the <script> tag works just like the src attribute of an tag,
or an <a> tag’s href attribute. In other words, it points to a file either in your website
or on another website (see the box on the next page).

Note: When adding the src attribute to link to an external JavaScript file, don’t add any JavaScript code
between the opening and closing <script> tags. If you want to link to an external JavaScript file and add
custom JavaScript code to a page, use a second set of <script> tags. For example:

<script src="navigation.js"></script>

<script >

 alert('Hello world!');

</script>

28 javascript & jquery: the missing manual

How to Add
JavaScript to a Page

UP TO SPEED

URL Types
When attaching an external JavaScript file to a web page,
you need to specify a URL for the src attribute of the
<script> tag. A URL or Uniform Resource Locator is a
path to a file located on the web. There are three types of
paths: absolute path, root-relative path, and document-
relative path. All three indicate where a web browser can
find a particular file (like another web page, a graphic, or
a JavaScript file).

An absolute path is like a postal address—it contains all the
information needed for a web browser located anywhere
in the world to find the file. An absolute path includes
http://, the hostname, and the folder and name of the file.
For example: http://www.cosmofarmer.com/scripts/site.js.

A root-relative path indicates where a file is located rela-
tive to a site’s top-level folder—the site’s root folder. A root-
relative path doesn’t include http:// or the domain name. It
begins with a / (slash) indicating the site’s root folder—the
folder the home page is in. For example, /scripts/site.js
indicates that the file site.js is located inside a folder named
scripts, which is itself located in the site’s top-level folder.
An easy way to create a root-relative path is to take an
absolute path and strip off the http:// and the host name.
For example, http://www.sawmac.com/index.html written
as a root-relative URL is /index.html.

A document-relative path specifies the path from the web
page to the JavaScript file. If you have multiple levels of
folders on your website, you’ll need to use different paths
to point to the same JavaScript file. For example, sup-
pose you have a JavaScript file named site.js located in a
folder named scripts in your website’s main directory. The
document-relative path to that file will look one way for
the home page—scripts/site.js—but for a page located in-
side a folder named about, the path to the same file would
be different; ../scripts/site.js—the ../ means climb up out of

the about folder, while the /scripts/site.js means go to the
scripts folder and get the file site.js.

Here are some tips on which URL type to use:

• If you’re pointing to a file that’s not on the same serv-
er as the web page, you must use an absolute path.
It’s the only type that can point to another website.

• Root-relative paths are good for JavaScript files stored
on your own site. Since they always start at the root
folder, the URL for a JavaScript file will be the same
for every page on your website, even when web
pages are located in folders and subfolders on your
site. However, root-relative paths don’t work unless
you’re viewing your web pages through a web server—
either your web server out on the Internet, or a web
server you’ve set up on your own computer for test-
ing purposes. In other words, if you’re just opening
a web page off your computer using the browser’s
File→Open command, the web browser won’t be
able to locate, load, or run JavaScript files that are
attached using a root-relative path.

• Document-relative paths are the best when you’re
designing on your own computer without the aid of a
web server. You can create an external JavaScript file,
attach it to a web page, and then check the JavaScript
in a web browser simply by opening the web page off
your hard drive. Document-relative paths work fine
when moved to your actual, living, breathing website
on the Internet, but you’ll have to rewrite the URLs
to the JavaScript file if you move the web page to
another location on the server. In this book, we’ll be
using document-relative paths, since they will let you
follow along and test the tutorials on your own com-
puter without a web server.

You can (and often will) attach multiple external JavaScript files to a single web
page. For example, you might have created one external JavaScript file that controls
a drop-down navigation bar, and another that lets you add a nifty slideshow to a
page of photos (you’ll learn how to do that on page 222). On your photo gallery page,
you’d want to have both JavaScript programs, so you’d attach both files.

29chapter 1: writing your first javascript program

Your First JavaScript
Program

In addition, you can attach external JavaScript files and add a JavaScript program to
the same page like this:

<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>My Web Page</title>
<script src="navigation.js"></script>
<script src="slideshow.js"></script>
<script>
 alert('hello world!');
</script>
</head>

Just remember that you must use one set of opening and closing <script> tags for
each external JavaScript file. You’ll create an external JavaScript file in the tutorial
that starts on page 33.

You can keep external JavaScript files anywhere inside your website’s root folder (or
any subfolder inside the root). Many web developers create a special directory for
external JavaScript files in the site’s root folder: common names are js (meaning
JavaScript) or libs (meaning libraries).

Note: Sometimes the order in which you attach external JavaScript files matters. As you’ll see later in this
book, sometimes scripts you write depend upon code that comes from an external file. That’s often the
case when using JavaScript libraries (JavaScript code that simplifies complex programming tasks). You’ll
see an example of a JavaScript library in action in the tutorial on page 33.

Your First JavaScript Program
The best way to learn JavaScript programming is by actually programming. Through-
out this book, you’ll find hands-on tutorials that take you step-by-step through the
process of creating JavaScript programs. To get started, you’ll need a text editor (see
page 10 for recommendations), a web browser, and the exercise files located at
www.sawmac.com/js2e (see the following Note for complete instructions).

Note: The tutorials in this chapter require the example files from this book’s website, www.sawmac.com/
js2e/. Click the “Download tutorials” link to download them. (The tutorial files are stored as a single Zip file.)

Windows users should download the Zip file and double-click it to open the archive. Click the Extract All
Files option, and then follow the instructions of the Extraction Wizard to unzip the files and place them
on your computer. Mac users, just double-click the file to decompress it. After you’ve downloaded and
decompressed the files, you should have a folder named MM_JAVASCRIPT2E on your computer, contain-
ing all of the tutorial files for this book.

To get your feet wet and provide a gentle introduction to JavaScript, your first program
will be very simple:

www.sawmac.com/js2e/
www.sawmac.com/js2e/

30 javascript & jquery: the missing manual

Your First JavaScript
Program

1. In your favorite text editor, open the file hello.html.
This file is located in the chapter01 folder in the MM_JAVASCRIPT2E folder
you downloaded from www.sawmac.com/js2e. It’s a very simple HTML page,
with an external cascading style sheet to add a little visual excitement.

2. Click in the empty line just before the closing </head> tag and type:
<script>

This code is actually HTML, not JavaScript. It informs the web browser that the
stuff following this tag is JavaScript.

3. Press the Return key to create a new blank line, and type:
alert('hello world');

You’ve just typed your first line of JavaScript code. The JavaScript alert() func-
tion is a command that pops open an Alert box and displays the message that
appears inside the parentheses—in this case, hello world. Don’t worry about
all of the punctuation (the parentheses, quotes, and semicolon) just yet. You’ll
learn what they do in the next chapter.

4. Press the Return key once more, and type </script>. The code should now
look like this:
<link href="../_css/site.css" rel="stylesheet">
<script>
alert('hello world');
</script>
</head>

In this example, the stuff you just typed is shown in boldface. The two HTML
tags are already in the file; make sure you type the code exactly where shown.

5. Launch a web browser and open the hello.html file to preview it.
A JavaScript Alert box appears (see Figure 1-2). Notice that the page is blank
when the alert appears. (If you don’t see the Alert box pictured in Figure 1-2,
you probably mistyped the code listed in the previous steps. Double-check your
typing and read the following Note.)

Figure 1-2: The JavaScript
Alert box is a quick way to grab
someone’s attention. It’s one
of the simplest JavaScript com-
mands to learn and use.

31chapter 1: writing your first javascript program

Writing Text on a
Web Page

6. Click the Alert box’s OK button to close it.
When the Alert box disappears, the web page appears in the browser window.

Tip: When you first start programming, you’ll be shocked at how often your JavaScript programs don’t
seem to work…at all. For new programmers, the most common cause of nonfunctioning programs is
simple typing mistakes. Always double-check to make sure you spelled commands (like alert in the first
script) correctly. Also, notice that punctuation frequently comes in pairs (the opening and closing paren-
theses, and single-quote marks from your first script, for example). Make sure you include both opening
and closing punctuation marks when they’re required.

Although this first program isn’t earth-shatteringly complex (or even that in-
teresting), it does demonstrate an important concept: A web browser will run a
JavaScript program the moment it reads in the JavaScript code. In this example,
the alert() command appeared before the web browser displayed the web page,
because the JavaScript code appeared before the HTML in the <body> tag. This
concept comes into play when you start writing programs that manipulate the
HTML of the web page—as you’ll learn in Chapter 3.

Note: Internet Explorer (IE) doesn’t like to run JavaScript programs contained in web pages that you open
directly off your hard drive, for fear that the JavaScript program might do something harmful. So when
you try to preview the tutorial files for this book in Internet Explorer, you’ll see a message saying that IE
has blocked the script. Click “Allow blocked content” to see the program run. This annoying behavior only
applies to web pages you preview from your computer, not from files you put up on a web server. When
following along with the tutorials in this book, it’s better to preview pages in a different web browser like
Firefox, Chrome, or Safari, so you can avoid having to hit the “Allow blocked content” button each time
you view your pages.

Writing Text on a Web Page
The last script popped up a dialog box in the middle of your monitor. What if you
want to print a message directly onto a web page using JavaScript? There are many
ways to do so, and you’ll learn some sophisticated techniques later in this book.
However, you can achieve this simple goal with a built-in JavaScript command, and
that’s what you’ll do in your second script:

1. In your text editor, open the file hello2.html.
While <script> tags usually appear in the <head> of a web page, you can put
them and JavaScript programs directly in the body of the web page.

2. Directly below <h1>Writing to the document window</h1>, type the follow-
ing code:
<script>
document.write('<p>Hello world!</p>');
</script>

32 javascript & jquery: the missing manual

Writing Text on a
Web Page

Like the alert() function, document.write() is a JavaScript command that literal-
ly writes out whatever you place between the opening and closing parentheses.
In this case, the HTML <p>Hello world!</p> is added to the page: a paragraph
tag and two words.

3. Save the page, and open it in a web browser.
The page opens and the words “Hello world!” appear below the red headline
(see Figure 1-3).

Figure 1-3:
Wow. This script may
not be something to
“document.write”
home about—ha,
ha, JavaScript
humor—but it does
demonstrate that you
can use JavaScript
to add content to a
web page, a trick
that comes in handy
when you want to
display messages
(like “Welcome back
to the site, Dave”)
after a web page has
downloaded.

Note: The tutorial files you downloaded also include the completed version of each tutorial. If you can’t
seem to get your JavaScript working, compare your work with the file that begins with complete_ in the
same folder as the tutorial file. For example, the file complete_hello2.html contains a working version of
the script you added to file hello2.html.

The two scripts you just created may leave you feeling a little underwhelmed with
JavaScript…or this book. Don’t worry. It’s important to start out with a full under-
standing of the basics. You’ll be doing some very useful and complicated things us-
ing JavaScript in just a few chapters. In fact, in the remainder of this chapter you’ll
get a taste of some of the advanced features you’ll be able to add to your web pages
after you’ve worked your way through the first two parts of this book.

33chapter 1: writing your first javascript program

Attaching an
External JavaScript

File

Attaching an External JavaScript File
As discussed on page 27, you’ll usually put JavaScript code in a separate file if you
want to use the same scripts on more than one web page. You can then instruct a web
page to load that file and use the JavaScript inside it. External JavaScript files also
come in handy when you’re using someone else’s JavaScript code. In particular, there
are collections of JavaScript code called libraries, which provide useful JavaScript
programming: Usually, these libraries make it easy for you to do something that’s
normally quite difficult to do. You’ll learn more about JavaScript libraries on page 117,
and, in particular, the JavaScript library this book uses—jQuery.

But for now, you’ll get experience attaching an external JavaScript file to a page, and
writing a short program that does some amazing things:

1. In your text editor, open the file fadeIn.html.
This page contains just some simple HTML—a few <div> tags, a headline, and
a couple of paragraphs. You’ll be adding a simple visual effect to the page, which
causes all of the content to slowly fade into view.

2. Click in the blank line between the <link> and closing </head> tags near the
top of the page, and type:
<script src="../_js/jquery-1.6.3.min.js"></script>

This code links a file named jquery-1.6.3.min.js, which is contained in a folder
named _js, to this web page. When a web browser loads this web page, it also
downloads the jquery-1.6.3.min.js JavaScript file and runs the code inside it.
Next, you’ll add your own JavaScript programming to this page.

Note: It’s common to include a version number in the name of a JavaScript file. In this example, the
filename is jquery-1.6.3.min.js. The 1.6.3 indicates the version 1.6.3 of jQuery. The min part means that the
file is minimized—which makes the file smaller so that it downloads faster.

3. Press Return to create a new blank line, and then type:
<script>

HTML tags usually travel in pairs—an opening and closing tag. To make sure
you don’t forget to close a tag, it helps to close the tag immediately after typing
the opening tag, and then fill in the stuff that goes between the tags.

4. Press Return twice to create two blank lines, and then type:
</script>

This ends the block of JavaScript code. Now you’ll add some programming.
5. Click the empty line between the opening and closing script tags and type:

$(document).ready(function() {

You’re probably wondering what the heck that is. You’ll find out all the details
of this code on page 169, but in a nutshell, this line takes advantage of the pro-
gramming that’s inside the jquery-1.6.3.min.js file to make sure that the browser
executes the next line of code at the right time.

34 javascript & jquery: the missing manual

Tracking Down
Errors

6. Hit return to create a new line, and then type:
$('body').hide().fadeIn(3000);

This line does something magical: It makes the page’s content first disappear
and then slowly fade into view over the course of 3 seconds (or 3000 milli-
seconds). How does it do that? Well, that’s part of the magic of jQuery, which
makes complex effects possible with just a single line of code.

7. Hit Return one last time, and then type:
});

This code closes up the JavaScript code, much as a closing </script> tag indi-
cates the end of a JavaScript program. Don’t worry too much about all those
weird punctuation marks—you’ll learn how they work in detail later in the
book. The main thing you need to make sure of is to type the code exactly as it’s
listed here. One typo, and the program may not work.
The final code you added to the page should look like the bolded text below:
<link href="../_css/site.css" rel="stylesheet">
<script src="../_js/jquery-1.6.3.min.js"></script>
<script>
$(function() {
$('body').hide().fadeIn(3000);
});
</script>
</head>

8. Save the HTML file, and open it in a web browser.
You should now see the page slowly fade into view. Change the number 3000
to different values (like 250 and 10000) to see how that changes the way the
page works.

Note: If you try to preview this page in Internet Explorer and it doesn’t seem to do anything, you’ll
need to click the “Enable blocked content” box that appears at the bottom of the page (see the Note on
page 31).

As you can see, it doesn’t take a whole lot of JavaScript to do some amazing things
to your web pages. Thanks to JavaScript libraries like jQuery, you’ll be able to create
sophisticated, interactive websites without being a programming wizard yourself.
However, it does help to know the basics of JavaScript and programming. In the next
three chapters, we’ll cover the very basics of JavaScript so that you’re comfortable
with the fundamental concepts and syntax that make up the language.

Tracking Down Errors
The most frustrating moment in JavaScript programming comes when you try to
view your JavaScript-powered page in a web browser…and nothing happens. It’s
one of the most common experiences for programmers. Even very experienced pro-
grammers don’t always get it right the first time they write a program, so figuring out
what went wrong is just part of the game.

35chapter 1: writing your first javascript program

Tracking Down
Errors

Most web browsers are set up to silently ignore JavaScript errors, so you usually
won’t even see a “Hey this program doesn’t work!” dialog box. (Generally, that’s a
good thing, since you don’t want a JavaScript error to interrupt the experience of
viewing your web pages.)

So how do you figure out what’s gone wrong? There are many ways to track errors in
a JavaScript program. You’ll learn some advanced debugging techniques in Chapter 15,
but the most basic method is to consult the web browser. Most web browsers keep
track of JavaScript errors and record them in a separate window called an error con-
sole. When you load a web page that contains an error, you can then view the console
to get helpful information about the error, like which line of the web page it occurred
in and a description of the error.

Often, you can find the answer to the problem in the error console, fix the Java-
Script, and then the page will work. The console helps you weed out the basic typos
you make when you first start programming, like forgetting closing punctuation, or
mistyping the name of a JavaScript command. You can use the error console in your
favorite browser, but since scripts sometimes work in one browser and not another,
this section shows you how to turn on the JavaScript console in all major browsers,
so you can track down problems in each.

The	Firefox	JavaScript	Console
Firefox’s JavaScript console is a great place to begin tracking down errors in your
code. Not only does the console provide fairly clear descriptions of errors (no de-
scriptions are ever that clear when it comes to programming), it also identifies the
line in your code where the error occurred.

For example, in Figure 1-4, the console identifies the error as an “unterminated string
literal,” meaning that there’s an opening single quote mark before “slow” but no final
quote mark. The console also identifies the name of the file the error is in (fadeIn
.html in this case) and the line number the error occurs (line 11). Best of all, it even
indicates the source of the error with an arrow—in this case, highlighting the opening
quote mark.

Warning: Although the error console draws an arrow pointing to the location where Firefox encountered
the error, that’s not always where you made the mistake. Sometimes you need to fix your code before or
after that arrow.

36 javascript & jquery: the missing manual

Tracking Down
Errors

Figure 1-4:
Firefox’s JavaScript
console identifies
errors in your pro-
grams. The console
keeps a list of errors
for previous pages as
well, so pretty soon
the list can get very
long. Just click the
Clear button to erase
all the errors listed in
the console.

To show the JavaScript console, click the Firefox menu and choose Web
Developer→Error Console (on Windows) or Tools→Error Console (on Macs). The
console is a free-floating window that you can move around. It not only displays
JavaScript errors, but CSS errors as well, so if you’ve made any mistakes in your
Cascading Styles Sheets, you’ll find out about those as well. (Make sure you select
the Errors button at the top of the console; otherwise, you might see warnings and
messages that aren’t related to your JavaScript error.)

Tip: Since the error console displays the line number where the error occurred, you may want to use a
text editor that can show line numbers. That way, you can easily jump from the error console to your text
editor and identify the line of code you need to fix.

Unfortunately, there’s a long list of things that can go wrong in a script, from simple
typos to complex errors in logic. When you’re just starting out with JavaScript pro-
gramming, many of your errors will be the simple typographic sort. For example,
you might forget a semicolon, quote mark, or parenthesis, or misspell a JavaScript
command. You’re especially prone to typos when following examples from a book
(like this one). Here are a few errors you may see a lot of when you first start typing
the code from this book:

• Missing) after argument list. You forgot to type a closing parenthesis at the
end of a command. For example, in this code—alert(‘hello’;—the parenthesis is
missing after ‘hello’.

37chapter 1: writing your first javascript program

Tracking Down
Errors

• Unterminated string literal. A string is a series of characters enclosed by quote
marks (you’ll learn about these in greater detail on page 43). For example, ‘hello’
is a string in the code alert(‘hello’);. It’s easy to forget either the opening or closing
quote mark.

• XXX is not defined. If you misspell a JavaScript command—aler(‘hello’);—
you’ll get an error saying that the (misspelled) command isn’t defined: for ex-
ample, “aler is not defined.”

• Syntax error. Occasionally, Firefox has no idea what you were trying to do and
provides this generic error message. A syntax error represents some mistake
in your code. It may not be a typo, but you may have put together one or more
statements of JavaScript in a way that isn’t allowed. In this case, you need to look
closely at the line where the error was found and try to figure out what mistake
you made. Unfortunately, these types of errors often require experience with
and understanding of the JavaScript language to fix.

As you can see from the list above, many errors you’ll make simply involve forget-
ting to type one of a pair of punctuation marks—like quote marks or parentheses.
Fortunately, these are easy to fix, and as you get more experience programming,
you’ll eventually stop making them almost completely (no programmer is perfect).

Note: The Firebug plug-in for Firefox (http://getfirebug.com/) greatly expands on Firefox’s Error Console.
In fact, it provided the model for the other developer tools you’ll find in IE9, Chrome, and Safari (dis-
cussed next). You’ll learn about Firebug in Chapter 15.

Displaying	the	Internet	Explorer	9	Console
Internet Explorer 9 provides a sophisticated set of developer tools for viewing not
only JavaScript errors, but also analyzing CSS, HTML, and transfers of information
over the network. When open, the developer tool window appears in the bottom
half of the browser window (see Figure 1-5). Press the F12 key to open the developer
tools, and press it again to close them. You’ll find JavaScript errors listed under the
Console tab (circled in Figure 1-5). Unlike the Firefox Error Console, which keeps a
running total of JavaScript errors for all of the pages you visit, you need to open the
IE 9 Console, then reload the page to see an error.

38 javascript & jquery: the missing manual

Tracking Down
Errors

Figure 1-5:
The Internet Explorer
Developer Tools
provide access to
JavaScript errors that
occur on a page, as
well as a whole lot of
other information.

IE9’s Console displays error messages similar to those described for Firefox above.
For example, “Unterminated string constant” is the same as Firefox’s “Unterminated
string literal” message—meaning there’s a missing quote mark. In addition, Internet
Explorer identifies the line of code in the HTML file where the error occurred.

Opening	the	Chrome	JavaScript	Console
Google’s Chrome browser also lets you view JavaScript errors from its JavaScript
console. To open the console, click the tools icon (circled in Figure 1-6), select the
Tools menu, and choose JavaScript console from the pop-out menu. Once the con-
sole opens, click the Errors button to see just the JavaScript errors you’re after. Un-
fortunately, Chrome’s error messages tend to be a little more cryptic. For example,
the error message for leaving out a closing quote mark is “Uncaught SyntaxError:
Unexpected token ILLEGAL.” Not exactly clear or friendly. In fact, it kind of makes
you feel as if you make one more mistake like that Chrome will scream, “Release the
robotic hounds!”

39chapter 1: writing your first javascript program

Tracking Down
Errors

Figure 1-6:
Chrome sports a
powerful set of
developer tools that
looks a lot like the
ones you’ll find in
Internet Explorer 9
and Safari.

Accessing	the	Safari	Error	Console
Safari’s error console is available from the Develop menu: Develop→Show Er-
ror Console (on the Mac, you can use the keyboard shortcut Option-⌘-C, and on
Windows, the shortcut is Ctrl+Alt+C). However, the Develop menu isn’t normally
turned on when Safari is installed, so there are a couple of steps to get to the Java-
Script console.

To turn on the Develop menu, you need to first access the Preferences window. On
a Mac, choose Safari→Preferences. On Windows, click the gear icon in the top right
of the browser, and choose Preferences. Once the Preferences window opens, click
the Advanced button. Check the “Show Develop menu in menu bar” box and close
the Preferences window.

When you restart Safari, the Develop menu will appear between the Bookmarks
and Window menus in the menu bar at the top of the screen on Macs; and on
Windows, you’ll find it under the page icon in the top right of the browser. Select
Develop→Show Error Console to open the console (see Figure 1-7).

40 javascript & jquery: the missing manual

Tracking Down
Errors

Figure 1-7:
The Safari Error Console
displays the name of the
JavaScript error, the file
name (and location), and
the line on which Safari
encountered the error.
Each tab or browser
window has its own error
console, so if you’ve al-
ready opened the console
for one tab, you need to
choose Develop→Error
Console if you wish to see
an error for another tab
or window.

41

chapter
2

The Grammar of
JavaScript

Learning a programming language is a lot like learning any new language:
There are words to learn, punctuation to understand, and a new set of rules to
master. And just as you need to learn the grammar of French to speak French,

you must become familiar with the grammar of JavaScript to program JavaScript.
This chapter covers the concepts that all JavaScript programs rely on.

If you’ve had any experience with JavaScript programming, many of these concepts
may be old hat, so you might just skim this chapter. But if you’re new to JavaScript,
or you’re still not sure about the fundamentals, this chapter introduces you to basic
(but crucial) topics.

Statements
A JavaScript statement is a basic programming unit, usually representing a single
step in a JavaScript program. Think of a statement as a sentence: Just as you string
sentences together to create a paragraph (or a chapter, or a book), you combine state-
ments to create a JavaScript program. In the last chapter you saw several examples
of statements. For example:

alert('Hello World!');

This single statement opens an alert window with the message “Hello World!” in it.
In many cases, a statement is a single line of code. Each statement ends with a semi-
colon—it’s like a period at the end of a sentence. The semicolon makes it clear that
the step is over and that the JavaScript interpreter should move on to the next action.

42 javascript & jquery: the missing manual

Built-In Functions

Note: Officially, putting a semicolon at the end of a statement is optional, and some programmers leave
them out to make their code shorter. Don’t be one of them. Leaving off the semicolon makes reading
your code more difficult and, in some cases, causes JavaScript errors. If you want to make your JavaScript
code more compact so that it downloads more quickly, see page 465.

The general process of writing a JavaScript program is to type a statement, enter a
semicolon, press Return to create a new, blank line, type another statement, followed
by a semicolon, and so on and so on until the program is complete.

Built-In Functions
JavaScript and web browsers let you use various commands to make things happen
in your programs and on your web pages. These commands, called functions, are
like verbs in a sentence. They get things done. For example, the alert() function you
encountered earlier makes the web browser open a dialog box and display a message.

Some functions, like alert() or document.write(), which you encountered on page 31,
are specific to web browsers. In other words, they only work with web pages, so you
won’t find them when programming in other environments that use JavaScript (like,
for example, when scripting Adobe applications like Acrobat or Dreamweaver or in
Flash’s JavaScript-based ActionScript).

Other functions are universal to JavaScript and work anywhere JavaScript works.
For example, isNaN() is a function that checks to see if a particular value is a num-
ber or not—this function comes in handy when you want to check if a visitor has
correctly supplied a number for a question that requires a numerical answer (for
example, “How many widgets would you like?”). You’ll learn about isNaN() and how
to use it on page 447.

JavaScript has many different functions, which you’ll learn about throughout this
book. One quick way to identify a function in a program is by the use of paren-
theses. For example, you can tell isNaN() is a function because of the parentheses
following isNaN.

In addition, JavaScript lets you create your own functions, so you can make your
scripts do things beyond what the standard JavaScript commands offer. You’ll learn
about functions in Chapter 3, starting on page 100.

Types of Data
You deal with different types of information every day. Your name, the price of food,
the address of your doctor’s office, and the date of your next birthday are all informa-
tion that is important to you. You make decisions about what to do and how to live
your life based on the information you have. Computer programs are no different.
They also rely on information to get things done. For example, to calculate the total
for a shopping cart, you need to know the price and quantity of each item ordered.
To customize a web page with a visitor’s name (“Welcome Back, Kotter”), you need
to know her name.

43chapter 2: the grammar of javascript

Types of Data

Programming languages usually categorize information into different types, and
treat each type in a different way. In JavaScript, the three most basic types of data are
number, string, and Boolean.

Numbers
Numbers are used for counting and calculating; you can keep track of the number
of days until summer vacation, or calculate the cost of buying two tickets to a movie.
Numbers are very important in JavaScript programming: You can use numbers to
keep track of how many times a visitor has visited a web page, to specify the exact
pixel position of an item on a web page, or to determine how many products a visitor
wants to order.

In JavaScript, a number is represented by a numeric character; 5, for example, is
the number five. You can also use fractional numbers with decimals, like 5.25 or
10.3333333. JavaScript even lets you use negative numbers, like –130.

Since numbers are frequently used for calculations, your programs will often include
mathematical operations. You’ll learn about operators on page 50, but just to provide
an example of using JavaScript with numbers, say you wanted to print the total value
of 5 plus 15 on a web page; you could do that with this line of code:

document.write(5 + 15);

This snippet of JavaScript adds the two numbers together and prints the total (20)
onto a web page. There are many different ways to work with numbers, and you’ll
learn more about them starting on page 445.

Strings
To display a name, a sentence, or any series of letters, you use strings. A string is just
a series of letters and other symbols enclosed inside of quote marks. For example,
‘Welcome Hal’, and “You are here” are both examples of strings. You used a string in
the last chapter with the alert command—alert(‘Hello World!’);.

A string’s opening quote mark signals to the JavaScript interpreter that what follows
is a string—just a series of symbols. The interpreter accepts the symbols literally,
rather than trying to interpret the string as anything special to JavaScript like a com-
mand. When the interpreter encounters the final quote mark, it understands that it
has reached the end of the string and continues onto the next part of the program.

You can use either double quote marks (“hello world”) or single quote marks (‘hello
world’) to enclose the string, but you must make sure to use the same type of quote
mark at the beginning and end of the string (for example, “this is not right’ isn’t a val-
id string because it begins with a double-quote mark but ends with a single-quote).

Note: You’ll notice that in the main body of this book, we use curly quotes—“ ”and ‘ ’—but when coding Ja-
vaScript, you just use regular straight quote marks: " " and ' '. The code examples (like alert(‘Warning, warn-
ing!’); below) use the proper quote mark style. Blame it in on Gutenberg—he didn’t know how to program.

44 javascript & jquery: the missing manual

Types of Data

So, to pop-up an alert box with the message Warning, warning! you could write:
alert('Warning, warning!');

or
alert("Warning, warning!");

You’ll use strings frequently in your programming—when adding alert messages,
when dealing with user input on web forms, and when manipulating the contents
of a web page. They’re so important that you’ll learn a lot more about using strings
starting on page 425.

FREQUENTLY ASKED QUESTION

Putting Quotes into Strings
When I try to create a string with a quote mark in it, my
program doesn’t work. Why is that?

In JavaScript, quote marks indicate the beginning and end
of a string, even when you don’t want them to. When the
JavaScript interpreter encounters the first quote mark, it
says to itself, “Ahh, here comes a string.” When it reaches
a matching quote mark, it figures it has come to the end of
the string. That’s why you can’t create a string like this: “He
said, “Hello.””. In this case, the first quote mark (before the
word “He”) marks the start of the string, but as soon as the
JavaScript interpreter encounters the second quote mark
(before the word “Hello”), it figures that the string is over,
so you then end up with the string “He said, ” and the
“Hello.” part, which creates a JavaScript error.

There are a couple of ways to get around this conundrum.
The easiest method is to use single quotes to enclose a
string that has one or more double quotes inside it. For ex-
ample, ‘He said, “Hello.”’ is a valid string—the single quotes
create the string, and the double quotes inside are a part of
the string. Likewise, you can use double quotes to enclose

a string that has a single quote inside it: “This isn’t fair,”
for example.

Another method is to tell the JavaScript interpreter to just
treat the quote mark inside the string literally—that is, treat
the quote mark as part of the string, not the end of the
string. You do this using something called an escape char-
acter. If you precede the quote mark with a backward slash
(\), the quote is treated as part of the string. You could
rewrite the above example like this: “He said, \“Hello.\””.
In some cases, an escape character is the only choice. For
example: ‘He said, “This isn\’t fair.”’ Because the string is
enclosed by single quotes, the lone single quote in the
word “isn’t” has to have a backward slash before it: isn\’t.

You can even escape quote marks when you don’t neces-
sarily have to—as a way to make it clear that the quote mark
should be taken literally. For example. ‘He said, “Hello.”’.
Even though you don’t need to escape the double quotes
(since single quotes surround the entire string), some pro-
grammers do it anyway so that it’s clear to them that the
quote mark is just a quote mark.

Booleans
Whereas numbers and strings offer infinite possibilities, the Boolean data type is
simple. It is either one of two values: true or false. You’ll encounter Boolean data
types when you create JavaScript programs that respond intelligently to user input
and actions. For example, if you want to make sure a visitor supplied an email ad-
dress before submitting a form, you can add logic to your page by asking the simple
question: “Did the user type in a valid email address?” The answer to this question

45chapter 2: the grammar of javascript

Variables

is a Boolean value: Either the email address is valid (true) or it’s not (false). Depend-
ing on the answer to the question, the page could respond in different ways. For
example, if the email address is valid (true), then submit the form; if it is not valid
(false), then display an error message and prevent the form from being submitted.

In fact, Boolean values are so important that JavaScript includes two special keywords
to represent those values:

true

and
false

You’ll learn how Boolean values come into play when adding logic to your programs
in the box on page 82.

Variables
You can type a number, string, or Boolean value directly into your JavaScript pro-
gram, but these data types work only when you already have the information you
need. For example, you can make the string “Hi Bob” appear in an alert box like this:

alert('Hi Bob');

But that statement only makes sense if everyone who visits the page is named Bob. If
you want to present a personalized message for different visitors, the name needs to
be different depending on who is viewing the page: ‘Hi Mary,’ ‘Hi Joseph,’ ‘Hi Ezra,’
and so on. Fortunately, all programming languages provide something known as a
variable to deal with just this kind of situation.

A variable is a way to store information so that you can later use and manipulate it.
For example, imagine a JavaScript-based pinball game where the goal is to get the
highest score. When a player first starts the game, her score will be zero, but as she
knocks the pinball into targets, the score will get bigger. In this case, the score is a
variable since it starts at 0 but changes as the game progresses—in other words, a vari-
able holds information that can vary. See Figure 2-1 for an example of another game
that uses variables.

Think of a variable as a kind of basket: You can put an item into a basket, look inside
the basket, dump out the contents of a basket, or even replace what’s inside the bas-
ket with something else. However, even though you might change what’s inside the
basket, it still remains the same basket.

Creating	a	Variable
Creating a variable is a two-step process that involves declaring the variable and
naming it. In JavaScript, to create a variable named score, you would type:

var score;

The first part, var, is a JavaScript keyword that creates, or, in programming-speak,
declares the variable. The second part of the statement, score, is the variable’s name.

46 javascript & jquery: the missing manual

Variables

Figure 2-1:
The World’s Biggest Pac-Man
(http://worldsbiggestpacman
.com/) uses JavaScript to
create a Pac-Man game with
thousands of mazes. The game
tracks your current score and
your high score (top) as well
as the total number of Pac-dots
eaten and other game statistics
(right). These are all examples
of variables since they change
value as the game goes on.

What you name your variables is up to you, but there are a few rules you must follow
when naming variables:

• Variable names must begin with a letter, $, or _. In other words, you can’t begin
a variable name with a number or punctuation: so 1thing, and &thing won’t
work, but score, $score, and _score are fine.

• Variable names can only contain letters, numbers, $, and _. You can’t use
spaces or any other special characters anywhere in the variable name: fish&chips
and fish and chips aren’t legal, but fish_n_chips and plan9 are.

• Variable names are case-sensitive. The JavaScript interpreter sees uppercase and
lowercase letters as distinct, so a variable named SCORE is different from a vari-
able named score, which is also different from variables named sCoRE and Score.

• Avoid keywords. Some words in JavaScript are specific to the language itself:
var, for example, is used to create a variable, so you can’t name a variable var. In
addition, some words, like alert, document, and window, are considered special
properties of the web browser. You’ll end up with a JavaScript error if you try to
use those words as variable names. You can find a list of some reserved words
in Table 2-1. Not all of these reserved words will cause problems in all browsers,
but it’s best to steer clear of these names when naming variables.

http://worldsbiggestpacman.com/
http://worldsbiggestpacman.com/

47chapter 2: the grammar of javascript

Variables

Table 2-1. Some words are reserved for use by JavaScript and the web browser. Avoid using them as
variable names

JavaScript keywords Reserved for future use Reserved for browser
break abstract alert

case boolean blur

catch byte closed

continue char document

debugger class focus

default const frames

delete double history

do enum innerHeight

else export innerWidth

false extends length

finally final location

for float navigator

function goto open

if implements outerHeight

in import outerWidth

instanceof int parent

new interface screen

null let screenX

return long screenY

switch native statusbar

this package window

throw private

true protected

try public

typeof short

var static

void super

while synchronized

with throws

transient

volatile

yield

48 javascript & jquery: the missing manual

Variables

In addition to these rules, aim to make your variable names clear and meaningful.
Naming variables according to what type of data you’ll be storing in them makes it
much easier to look at your programming code and immediately understand what’s
going on. For example, score is a great name for a variable used to track a player’s
game score. The variable name s would also work, but the single letter “s” doesn’t
give you any idea about what’s stored in the variable.

Likewise, make your variable names easy to read. When you use more than one
word in a variable name, either use an underscore between words or capitalize the
first letter of each word after the first. For example, imagepath isn’t as easy to read
and understand as image_path or imagePath.

Using	Variables
Once a variable is created, you can store any type of data that you’d like in it. To do
so, you use the = sign. For example, to store the number 0 in a variable named score,
you could type this code:

var score;
score = 0;

The first line of code above creates the variable; the second line stores the number 0
in the variable. The equal sign is called an assignment operator, because it’s used to
assign a value to a variable. You can also create a variable and store a value in it with
just a single JavaScript statement like this:

var score = 0;

You can store strings, numbers, and Boolean values in a variable:
var firstName = 'Peter';
var lastName = 'Parker';
var age = 22;
var isSuperHero = true;

Tip: To save typing, you can declare multiple variables with a single var keyword, like this:

var x, y, z;

You can even declare and store values into multiple variables in one JavaScript statement:

var isSuperHero=true, isAfraidOfHeights=false;

Once you’ve stored a value in a variable, you can access that value simply by using
the variable’s name. For example, to open an alert dialog box and display the value
stored in the variable score, you’d type this:

alert(score);

Notice that you don’t use quotes with a variable—that’s just for strings, so the code
alert(‘score’) will display the word “score” and not the value stored in the variable
score. Now you can see why strings have to be enclosed in quote marks: The Java-
Script interpreter treats words without quotes as either special JavaScript objects
(like the alert() command) or as variable names.

49chapter 2: the grammar of javascript

Variables

FREQUENTLY ASKED QUESTION

Spaces, Tabs, and Carriage Returns in JavaScript
 JavaScript seems so sensitive about typos. How do I know
when I’m supposed to use space characters, and when I’m
not allowed to?

In general, JavaScript is pretty relaxed about spaces, car-
riage returns, and tabs. You can often leave out spaces
or even add extra spaces and carriage returns without a
problem. JavaScript interpreters ignore extra spaces, so
you’re free to insert extra spaces, tabs, and carriage returns
to format your code. For example, you don’t need a space
on either side of an assignment operator, but you can add
them if you find it easier to read. Both of the lines of code
below work:

var formName='signup';

var formRegistration = 'newsletter' ;

In fact, you can insert as many spaces as you’d like, and
even insert carriage returns within a statement. So both of
the following statements also work:

var formName = 'signup';

var formRegistration

 =

 'newsletter';

Of course, just because you can insert extra space, doesn’t
mean you should. The last two examples are actually harder
to read and understand because of the extra space. So the
general rule of thumb is to add extra space if it makes your
code easier to understand. For example, extra carriage re-
turns help make code easier to read when declaring and
setting the value of multiple variables at once. The follow-
ing code is a single line:

var score=0, highScore=0, player='';

However, some programmers find it easier to read if each
variable is on its own line:

var score=0,

 highScore=0,

 player='';

Whether you find this spacing easier to read is up to you;
the JavaScript interpreter just ignores those line breaks.
You’ll see examples of how space can make code easier
to read with JavaScript Object Literals (page 145) and with
arrays (page 59).

There are a couple of important exceptions to the above
rules. For example, you can’t insert a carriage return inside
a string; in other words, you can’t split a string over two
lines in your code like this:

var name = 'Bob

 Smith';

Inserting a carriage return (pressing the Enter or Return
key) like this produces a JavaScript error and your program
won’t run.

In addition, you must put a space between keywords:
varscore=0, for example, is not the same as var score=0.
The latter example creates a new variable named score,
while the former stores the value 0 in a variable named
varscore. The JavaScript interpreter needs the space be-
tween var and score to identify the var keyword: var
score=0. However, a space isn’t necessary between key-
words and symbols like the assignment operator (=) or the
semicolon that ends a statement.

Note: You should only use the var keyword once for each variable—when you first create the variable.
After that, you’re free to assign new values to the variable without using var.

50 javascript & jquery: the missing manual

Working with Data
Types and Variables

Working with Data Types and Variables
Storing a particular piece of information like a number or string in a variable is usu-
ally just a first step in a program. Most programs also manipulate data to get new
results. For example, add a number to a score to increase it, multiply the number of
items ordered by the cost of the item to get a grand total, or personalize a generic
message by adding a name to the end: “Good to see you again, Igor.” JavaScript pro-
vides various operators to modify data. An operator is simply a symbol or word that
can change one or more values into something else. For example, you use the +
symbol—the addition operator—to add numbers together. There are different types
of operators for the different data types.

Basic	Math
JavaScript supports basic mathematical operations such as addition, division, subtrac-
tion, and so on. Table 2-2 shows the most basic math operators and how to use them.

Table 2-2. Basic math with JavaScript

Operator What it does How to use it
+ Adds two numbers 5 + 25

- Subtracts one number from another 25 - 5

* Multiplies two numbers 5 * 10

/ Divides one number by another 15/5

You may be used to using an × for multiplication (4 × 5, for example), but in Java-
Script, you use the * symbol to multiply two numbers.

You can also use variables in mathematical operations. Since a variable is only a
container for some other value like a number or string, using a variable is the same
as using the contents of that variable.

var price = 10;
var itemsOrdered = 15;
var totalCost = price * itemsOrdered;

The first two lines of code create two variables (price and itemsOrdered) and store
a number in each. The third line of code creates another variable (totalCost) and
stores the results of multiplying the value stored in the price variable (10) and the
value stored in the itemsOrdered variable. In this case, the total (150) is stored in the
variable totalCost.

This sample code also demonstrates the usefulness of variables. Suppose you write
a program as part of a shopping cart system for an e-commerce website. Through-
out the program, you need to use the price of a particular product to make various
calculations. You could code the actual price throughout the program (for example,
say the product cost 10 dollars, so you type 10 in each place in the program that
price is used). However, if the price ever changes, you’d have to locate and change

51chapter 2: the grammar of javascript

Working with Data
Types and Variables

each line of code that uses the price. By using a variable, on the other hand, you can
set the price of the product somewhere near the beginning of the program. Then, if
the price ever changes, you only need to modify the one line of code that defines the
product’s price to update the price throughout the program:

var price = 20;
var itemsOrdered = 15;
var totalCost = price * itemsOrdered;

There are lots of other ways to work with numbers (you’ll learn a bunch starting
on page 445), but you’ll find that you most frequently use the basic math operators
listed in Table 2-2.

The	Order	of	Operations
If you perform several mathematical operations at once—for example, you total up
several numbers then multiply them all by 10—you need to keep in mind the order
in which the JavaScript interpreter performs its calculations. Some operators take
precedence over other operators, so they’re calculated first. This fact can cause some
unwanted results if you’re not careful. Take this example:

4 + 5 * 10

You might think this simply is calculated from left to right: 4 + 5 is 9 and 9 * 10 is
90. It’s not. The multiplication actually goes first, so this equation works out to 5 * 10
is 50, plus 4 is 54. Multiplication (the * symbol) and division (the / symbol) take
precedence over addition (+) and subtraction (–).

To make sure that the math works out the way you want it, use parentheses to group
operations. For example, you could rewrite the equation above like this:

(4 + 5) * 10

Any math that’s performed inside parentheses happens first, so in this case the 4 is
added to 5 first and the result, 9, is then multiplied by 10. If you want the multiplica-
tion to occur first, it would be clearer to write that code like this:

4 + (5*10);

Combining	Strings
Combining two or more strings to make a single string is a common programming
task. For example, if a web page has a form that collects a person’s first name in one
form field and his last name in a different field, you need to combine the two fields
to get his complete name. What’s more, if you want to display a message letting the
user know his form information was submitted, you need to combine the generic
message with the person’s name: “John Smith, thanks for your order.”

Combining strings is called concatenation, and you accomplish it with the + opera-
tor. Yes, that’s the same + operator you use to add number values, but with strings it
behaves a little differently. Here’s an example:

var firstName = 'John';
var lastName = 'Smith';
var fullName = firstName + lastName;

52 javascript & jquery: the missing manual

Working with Data
Types and Variables

In the last line of code above, the contents of the variable firstName are combined
(or concatenated) with the contents of the variable lastName—the two are literally
joined together and the result is placed in the variable fullName. In this example, the
resulting string is “JohnSmith”—there isn’t a space between the two names, since
concatenating just fuses the strings together. In many cases (like this one), you need
to add an empty space between strings that you intend to combine:

var firstName = 'John';
var lastName = 'Smith';
var fullName = firstName + ' ' + lastName;

The ‘’ in the last line of this code is a single quote, followed by a space, followed by a
final single quote. This code is simply a string that contains an empty space. When
placed between the two variables in this example, it creates the string “John Smith”.
This last example also demonstrates that you can combine more than two strings at
a time; in this case, three strings.

Note: Remember that a variable is just a container that can hold any type of data, like a string or number.
So when you combine two variables with strings (firstName + lastName), it’s the same as joining two
strings like this: ‘John’ + ‘Smith’.

Combining	Numbers	and	Strings
Most of the mathematical operators only make sense for numbers. For example, it
doesn’t make any sense to multiply 2 and the string “eggs”. If you try this example,
you’ll end up with a special JavaScript value NaN, which stands for “not a number.”
However, there are times when you may want to combine a string with a number.
For example, say you want to present a message on a web page that specifies how
many times a visitor has been to your website. The number of times she’s visited is
a number, but the message is a string. In this case, you use the + operator to do two
things: convert the number to a string and concatenate it with the other string. Here’s
an example:

var numOfVisits = 101;
var message = 'You have visited this site ' + numOfVisits + ' times.';

In this case, message contains the string “You have visited this site 101 times.” The
JavaScript interpreter recognizes that there is a string involved, so it realizes it won’t
be doing any math (no addition). Instead, it treats the + as the concatenation opera-
tor, and at the same time realizes that the number should be converted to a string
as well.

This example may seem like a good way to print words and numbers in the same
message. In this case, it’s obvious that the number is part of a string of letters that
makes up a complete sentence, and whenever you use the + operator with a string
value and a number, the JavaScript interpreter converts the number to a string.

53chapter 2: the grammar of javascript

Working with Data
Types and Variables

That feature, known as automatic type conversion, can cause problems, however.
For example, if a visitor answers a question on a form (“How many pairs of shoes
would you like?”) by typing a number (2, for example), that input is treated like a
string—‘2’. So you can run into a situation like this:

var numOfShoes = '2';
var numOfSocks = 4;
var totalItems = numOfShoes + numOfSocks;

You’d expect the value stored in totalItems to be 6 (2 shoes + 4 pairs of socks). Instead,
because the value in numOfShoes is a string, the JavaScript interpreter converts the
value in the variable numOfSocks to a string as well, and you end up with the string
“24” in the totalItems variable. There are a couple of ways to prevent this error.

First, you add + to the beginning of the string that contains a number like this:
var numOfShoes = '2';
var numOfSocks = 4;
var totalItems = +numOfShoes + numOfSocks;

Adding a + sign before a variable (make sure there’s no space between the two) tells
the JavaScript interpreter to try to convert the string to a number value—if the string
only contains numbers like “2”, you’ll end up with the string converted to a number.
In this example, you end up with 6 (2 + 4). Another technique is to use the Number()
command like this:

var numOfShoes = '2';
var numOfSocks = 4;
var totalItems = Number(numOfShoes) + numOfSocks;

Number() converts a string to a number if possible. (If the string is just letters and not
numbers, you get the NaN value to indicate that you can’t turn letters into a number.)

In general, you’ll most often encounter numbers as strings when getting input from a
visitor to the page; for example, when retrieving a value a visitor entered into a form
field. So, if you need to do any addition using input collected from a form or other
source of visitor input, make sure you run it through the Number() command first.

Note: This problem only occurs when adding a number with a string that contains a number. If you try
to multiply the numOfShoes variable with a variable containing a number—shoePrice, for example—the
JavaScript interpreter will convert the string in numOfShoes to a number and then multiply it with the
showPrice variable.

Changing	the	Values	in	Variables
Variables are useful because they can hold values that change as the program runs—
a score that changes as a game is played, for example. So how do you change a
variable’s value? If you just want to replace what’s contained inside a variable, assign
a new value to the variable. For example:

54 javascript & jquery: the missing manual

Working with Data
Types and Variables

var score = 0;
score = 100;

However, you’ll frequently want to keep the value that’s in the variable and just add
something to it or change it in some way. For example, with a game score, you never
just give a new score—you always add or subtract from the current score. To add to
the value of a variable, you use the variable’s name as part of the operation like this:

var score = 0;
score = score + 100;

That last line of code may appear confusing at first, but it uses a very common tech-
nique. Here’s how it works: All of the action happens to the right of the = sign first;
that is, the score + 100 part. Translated, it means “take what’s currently stored in score
(0) and then add 100 to it.” The result of that operation is then stored back into the
variable score. The final outcome of these two lines of code is that the variable score
now has the value of 100.

The same logic applies to other mathematical operations like subtraction, division,
or multiplication:

score = score - 10;
score = score * 10;
score = score / 10;

In fact, performing math on the value in a variable and then storing the result back
into the variable is so common that there are shortcuts for doing so with the main
mathematical operations, as pictured in Table 2-3.

Table 2-3. Shortcuts for performing math on a variable

Operator What it does How to use it The same as

 += Adds value on the right side of
equal sign to the variable on
the left.

 score += 10 score = score
+ 10

 -= Subtracts value on the right side
of the equal sign from the vari-
able on the left.

 score -= 10 score = score
- 10

 *= Multiplies the variable on the
left side of the equal sign and
the value on the right side of the
equal sign.

 score *= 10 score = score
* 10

 /= Divides the value in the variable
by the value on the right side of
the equal sign.

 score /= 10 score = score
/ 10

 ++ Placed directly after a variable
name, ++ adds 1 to the variable.

 score++ score = score
+ 1

 -- Placed directly after a variable
name, -- subtracts 1 from the
variable.

 score-- score = score
- 1

55chapter 2: the grammar of javascript

Tutorial: Using
Variables to Create

Messages
The same rules apply when concatenating a string to a variable. For example, say
you have a variable with a string in it and want to add another couple of strings onto
that variable:

var name = 'Franklin';
var message = 'Hello';
message = message + ' ' + name;

As with numbers, there’s a shortcut operator for concatenating a string to a variable.
The += operator adds the string value to the right of the = sign to the end of the vari-
able’s string. So the last line of the above code could be rewritten like this:

message += ' ' + name;

You’ll see the += operator frequently when working with strings, and throughout
this book.

Tutorial: Using Variables to Create Messages
In this tutorial, you’ll use variables to print (that is, write) a message onto a web page.

Note: To follow along with the tutorials in this chapter, you need to download the tutorial files from this
book’s companion website: http://sawmac.com/js2e/. See the Note on page 29 for details.

1. In a text editor, open the file use_variable.html in the chapter02 folder.
This page is just a basic HTML file with a simple CSS-enhanced design. It
doesn’t yet have any JavaScript. You’ll use variables to write a message onto a
web page.

2. Locate the <h1> tag (a little over half way down the file) and add the opening
and closing <script> tags, so that the code looks like this:
<h1>Using a Variable</h1>
<script>

</script>

This HTML should be familiar by now: It simply sets the page up for the script
you’re about to write.

Note: This page uses the HTML5 doctype. If you’re using XHTML 1.0 or HTML 4.01, add type=”javascript”
to the <script> tag like this: <script type=”text/javascript”>. This step isn’t needed for the script to work,
only for the page to pass the W3C Validator (see page7 for more on validation).

3. In between the <script> tags, type:
var firstName = 'Cookie';
var lastName = 'Monster';

You’ve just created your first two variables—firstName and lastName—and
stored two string values into them. Next you’ll add the two strings together,
and print the results to the web page.

56 javascript & jquery: the missing manual

Tutorial: Using
Variables to Create
Messages

4. Below the two variable declarations, type:
document.write('<p>');

As you saw in Chapter 1, the document.write() command adds text directly to
a web page. In this case, you’re using it to write HTML tags to your page. You
supply the command a string—‘<p>’—and it outputs that string just as if you
had typed it into your HTML code. It’s perfectly OK to supply HTML tags as
part of the document.write() command. In this case, the JavaScript is adding the
opening tag for a paragraph to hold the text you’re going to print on the page.

Note: There are more efficient methods than document.write() to add HTML to a web page. You’ll learn
about them on page 138.

5. Press Return and type the following JavaScript:
document.write(firstName + ' ' + lastName);

Here you use the values stored in the variables you created in step 3. The +
operator lets you put several strings together to create one longer string, which
the document.write() command then writes to the HTML of the page. In this
case, the value stored in firstName—‘Cookie’—is added to a space character,
and then added to the value of lastName—‘Monster’. The results are one string:
‘Cookie Monster’.

6. Press Return again and type document.write(‘</p>‘);.
The finished script should look like this:
<script type="text/javascript">
var firstName = 'Cookie';
var lastName = 'Monster';
document.write('<p>');
document.write(firstName + ' ' + lastName);
document.write('</p>');
</script>

7. Preview the page in a web browser to enjoy the fruits of your labor (see
Figure 2-2).
The words “Cookie Monster” should appear below the headline “Using a Vari-
able.” If you don’t see anything, there’s probably a typo in your code. Compare
the script above with what you typed and check page 34 for tips on debugging a
script using Firefox, Safari, Chrome, or IE 9.

8. Return to your text editor and change the second line of the script to read:
var lastName = 'Jar';

Save the page and preview it in a web browser. Voila, the message now reads:
Cookie Jar. (The file complete_use_variable.html has a working copy of this script.)

57chapter 2: the grammar of javascript

Tutorial: Asking for
Information

Figure 2-2:
While writing “Cookie
Monster” may not
be the reason you
picked up a book on
JavaScript, this script
does demonstrate an
important concept:
how to create and
use variables in
JavaScript.

Tutorial: Asking for Information
In the last script, you saw how to create variables, but you didn’t get to experience
how variables can respond to the user and produce unique, customized content. In
this next tutorial, you’ll learn how to use the prompt() command to gather input
from a user and change the display of the page based on that input.

1. In a text editor, open the file prompt.html in the chapter02 folder.
To make your programming go faster, the <script> tags have already been
added to this file. You’ll notice that there are two sets of <script> tags: one in
the head and one in the body. The JavaScript you’re about to add will do two
things. First, it will open up a dialog box that asks the user to type in an answer
to a question; second, in the body of the web page, a customized message using
the user’s response will appear.

2. Between the first set of <script> tags in the document head, type the bolded
code:
<script>
var name = prompt('What is your name?', '');
</script>

The prompt() function produces a dialog box similar to the alert() function.
However, instead of just displaying a message, the prompt() function can also
retrieve an answer (see Figure 2-3). In addition, to use the prompt() function,

58 javascript & jquery: the missing manual

Tutorial: Asking for
Information

you supply two strings separated by a comma between the parentheses. Figure
2-3 shows what happens to those two strings: The first string appears as the
dialog box’s question (“What is your name?” in this example).

Note: IE7 won’t let you use the prompt() method without enabling it in the browser’s settings. Fortu-
nately, IE7 is quickly disappearing from use.

Figure 2-3:
The prompt() function is
one way to retrieve user
input. It works by provid-
ing two strings to the
function—one to appear as
the question, and another
that pre-fills the prompt
box with text.

prompt('What is your name?', ");

The second string appears in the field the visitor types into. This example uses
what’s called an empty string, which is just two single quote marks ('') and results
in a blank text field. However, you can supply a useful instruction like “Please
type both your first and last names” for the second string, and it will appear in
the field. Unfortunately, a visitor will need to first delete that text from the text
field before entering his own information.
The prompt() function returns a string containing whatever the visitor typed
into the dialog box. In this line of JavaScript code, that result is stored into a new
variable named name.

Note: Many functions return a value. In plain English, that just means the function supplies some infor-
mation after it’s done. You can choose to ignore this information or store it into a variable for later use. In
this example, the prompt() function returns a string that you store in the variable name.

3. Save the page and preview it in a web browser.
When the page loads, you’ll see a dialog box. Notice that nothing else happens—
you don’t even see the web page—until you fill out the dialog box and click OK.
You’ll also notice that nothing much happens after you click OK—that’s because,
at this point, you’ve merely collected and stored the response; you haven’t used
that response on the page. You’ll do that next.

59chapter 2: the grammar of javascript

Arrays

4. Return to your text editor. Locate the second set of <script> tags and add the
code in bold:
<script>
document.write('<p>Welcome ' + name + '</p>');
</script>

Here you take advantage of the information supplied by the visitor. As with the
script on page 55, you’re combining several strings—an opening paragraph tag
and text, the value of the variable, and a closing paragraph tag—and printing
the results to the web page.

5. Save the page and preview it in a web browser.
When the Prompt dialog box appears, type in a name and click OK. Notice that
the name you type appears in the web page (Figure 2-4). Reload the web page
and type a new name—it changes! Just like a good variable should.

Figure 2-4:
The power of variables: This page
customizes its message based on a
visitor’s response.

Arrays
Simple variables, like the ones you learned about in the previous section, only hold
one piece of information, such as a number or a string value. They’re perfect when
you only need to keep track of a single thing like a score, an age, or a total cost.
However, if you need to keep track of a bunch of related items—like the names of all
of the days in a week, or a list of all of the images on a web page—simple variables
aren’t very convenient.

For example, say you’ve created a JavaScript shopping cart system that tracks items a
visitor intends to buy. If you wanted to keep track of all of the items the visitor adds
to her cart using simple variables, you’d have to write code like this:

60 javascript & jquery: the missing manual

Arrays

var item1 = 'Xbox 360';
var item2 = 'Tennis shoes';
var item3 = 'Gift certificate';

But what if she wanted to add more items than that? You’d have to create more
variables—item4, item5, and so on. And, because you don’t know how many items
the visitor might want to buy, you really don’t know how many variables you’ll have
to create.

Fortunately, JavaScript provides a better method of tracking a list of items, called
an array. An array is a way of storing more than one value in a single place. Think
of an array like a shopping list. When you need to go to the grocery store, you sit
down and write a list of items to buy. If you just went shopping a few days earlier,
the list might only contain a few items; but if your cupboard is bare, your shopping
list might be quite long. Regardless of how many items are on the list, though, there’s
still just a single list.

Without an array, you have to create a new variable for each item in the list. Imagine,
for example, that you couldn’t make a list of groceries on a single sheet of paper, but
had to carry around individual slips of paper—one for each item that you’re shop-
ping for. If you wanted to add another item to buy, you’d need a new slip of paper;
then you’d need to keep track of each slip as you shopped (see Figure 2-5). That’s
how simple variables work. But with an array, you can create a single list of items,
and even add, remove, or change items at any time.

Figure 2-5:
An array provides a simple, organized
way to track a list of related items. Adding
another item to the list is just like writing a
new item at the bottom of the list.

an array simple variables

potatoes

milk

eggs

bread

cheese

potatoes

milk
eggs

bread
cheese

Creating	an	Array
To create and store items in an array, you first declare the array’s name (just as you
would a variable) and then supply a list of comma-separated values: Each value rep-
resents one item in the list. As with variables, what you name your array is up to you,
but you need to follow the same naming rules listed on page 46. To create an array,

61chapter 2: the grammar of javascript

Arrays

you put the list of items between opening and closing brackets—[]. For example, to
create an array containing abbreviations for the seven days of the week, you could
write this code:

var days = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'];

The brackets—[]—are very important; they tell the JavaScript interpreter that it’s
dealing with an array. You can create an empty array without any elements like this:

var playList = [];

Creating an empty array is the equivalent of declaring a variable as described on
page 45. You’ll create an empty array when you don’t add items to the array until the
program is running. For example, the above array might be used to track songs that
someone selects from a list on a web page—you don’t know ahead of time which
songs the person will choose, so you declare an empty array and later fill it with
items as the person selects music. (Adding items to an array is described on page 63.)

Note: When looking through other people’s JavaScript programs (or other JavaScript books), you may
encounter another way to create an array using the Array keyword, like this:

var days = new Array('Mon', 'Tues', 'Wed');

This method is valid, but the method used in this book (called an array literal) is preferred by the pros
because it requires less typing, less code, and is considered more “elegant.”

You can store any mix of values in an array. In other words, numbers, strings, and
Boolean values can all appear in the same array:

var prefs = [1, 223, 'www.oreilly.com', false];

Note: You can even store arrays and other objects as elements inside an array. This technique can help
store complex data.

The array examples above show the array created on a single line. However, if you’ve
got a lot of items to add, or the items are long strings, trying to type all of that on a
single line can make your program difficult to read. Another option many program-
mers use is to create an array over several lines, like this:

var authors = ['Ernest Hemingway',
 'Charlotte Bronte',
 'Dante Alighieri',
 'Emily Dickinson'
];

As mentioned in the box on page 49, a JavaScript interpreter skips extra space and
line breaks, so even though this code is displayed on five lines, it’s still just a single
statement, as indicated by the final semicolon on the last line.

62 javascript & jquery: the missing manual

Arrays

Tip: To make the names line up as above, you’d type the first line—var authors = [‘Ernest Hemingway’,—
hit Return, then press the space key as many times as it takes to line up the next value, ‘Charlotte Bronte’,.

Accessing	Items	in	an	Array
You can access the contents of a simple variable just by using the variable’s name.
For example, alert(lastName) opens an alert box with the value stored in the variable
lastName. However, because an array can hold more than one value, you can’t just
use its name alone to access the items it contains. A unique number, called an index,
indicates the position of each item in an array. To access a particular item in an ar-
ray, you use that item’s index number. For example, say you’ve created an array with
abbreviations for the days of the week, and want to open an alert box that displayed
the first item. You could write this:

var days = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'];
alert(days[0]);

This code opens an alert box with ‘Mon’ in it. Arrays are zero-indexed, meaning that
the first item in an array has an index value of 0, and the second item has an index
value of 1: In other words, subtract one from the item’s spot in the list to get its
index value—the fifth item’s index is 5 minus 1; that is, 4. Zero-indexing is pretty
confusing when you first get started with programming, so Table 2-4 shows how the
array days (from the above example) is indexed, as well as the values it contains and
how to access each value.

Table 2-4. Items in an array must be accessed using an index number that’s the equivalent to their place
in the list minus 1

Index value Item To access item
0 Mon days[0]

1 Tues days[1]

2 Wed days[2]

3 Thurs days[3]

4 Fri days[4]

5 Sat days[5]

6 Sun days[6]

You can change the value of an item in an array by assigning a new value to the index
position. For example, to put a new value into the first item in the array days, you
could write this:

days[0] = 'Monday';

63chapter 2: the grammar of javascript

Arrays

Because the index number of the last item in an array is always one less than the
total number of items in an array, you only need to know how many items are in an
array to access the last item. Fortunately, this is an easy task since every array has
a length property, which contains the total number of items in the array. To ac-
cess the length property, add a period followed by length after the array’s name: For
example, days.length returns the number of items in the array named days (if you
created a different array, playList, for example, you’d get its length like this: playList.
length). So you can use this tricky bit of JavaScript to access the value stored in the
last item in the array:

days[days.length-1]

This last snippet of code demonstrates that you don’t have to supply a literal number
for an index (for example, the 0 in days[0]). You can also supply an equation that re-
turns a valid number. In this case, days.length – 1 is a short equation: It first retrieves
the number of items in the days array (that’s 7 in this example) and subtracts 1 from
it. So, in this case, days[days.length-1] translates to days[6].

You can also use a variable containing a number as the index:
var i = 0;
alert(days[i]);

The last line of code is the equivalent of alert(days[0]);. You’ll find this technique par-
ticularly useful when working with loops, as described in the next chapter (page 93).

Adding	Items	to	an	Array
Say you’ve created an array to track items that a user clicks on a web page. Each time
the user clicks the page, an item is added to the array. JavaScript supplies several
ways to add contents to an array.

Adding an item to the end of an array
To add an item to the end of an array, you can use the index notation from page 62,
using an index value that’s one greater than the last item in the list. For example, say
you’ve have created an array named properties:

var properties = ['red', '14px', 'Arial'];

At this point, the array has three items. Remember that the last item is accessed us-
ing an index that’s one less than the total number of items, so in this case, the last
item in this array is properties[2]. To add another item, you could do this:

properties[3] = 'bold';

This line of code inserts ‘bold’ into the fourth spot in the array, which creates an
array with four elements: [‘red’, ‘14px’, ‘Arial’, ‘bold’]. Notice that when you add the
new item, you use an index value that’s equal to the total number of elements cur-
rently in the array, so you can be sure you’re always adding an item to the end of an
array by using the array’s length property as the index. For example, you can rewrite
the last line of code like this:

properties[properties.length] = 'bold';

64 javascript & jquery: the missing manual

Arrays

You can also use an array’s push() command, which adds whatever you supply be-
tween the parentheses to the end of the array. As with the length property, you apply
push() by adding a period to the array’s name followed by push(). For example, here’s
another way to add an item to the end of the properties array:

properties.push('bold');

Whatever you supply inside the parentheses (in this example, the string ‘bold’) is
added as a new item at the end of the array. You can use any type of value, like a
string, number, Boolean, or even a variable.

One advantage of the push() command is that it lets you add more than one item to
the array. For example, say you want to add three values to the end of an array named
properties, you could do that like this:

properties.push('bold', 'italic', 'underlined');

Adding an item to the beginning of an array
If you want to add an item to the beginning of an array, use the unshift() command.
Here’s an example of adding the bold value to the beginning of the properties array:

var properties = ['red', '14px', 'Arial'];
properties.unshift('bold');

After this code runs, the array properties contains four elements: [‘bold’, ‘red’, ‘14px’,
‘Arial’]. As with push(), you can use unshift() to insert multiple items at the begin-
ning of an array:

properties.unshift('bold', 'italic', 'underlined');

Note: Make sure you use the name of the array followed by a period and the method you wish to
use. In other words, push(‘new item’) won’t work. You must first use the array’s name (whatever name
you gave the array when you created it) followed by a period, and then the method, like this: authors
.push(‘Stephen King’);.

Choosing how to add items to an array
So far, this chapter has shown you three ways to add items to an array. Table 2-5
compares these techniques. Each of these commands accomplishes similar tasks,
so the one you choose depends on the circumstances of your program. If the order
that the items are stored in the array doesn’t matter, then any of these methods work.
For example, say you have a page of product pictures, and clicking one picture adds
the product to a shopping cart. You use an array to store the cart items. The order
the items appear in the cart (or the array) doesn’t matter, so you can use any of these
techniques.

However, if you create an array that keeps track of the order in which something
happens, then the method you choose does matter. For example, say you’ve created
a page that lets visitors create a playlist of songs by clicking song names on the page.
Since a playlist lists songs in the order they should be played, the order is important.

65chapter 2: the grammar of javascript

Arrays

So if each time the visitor clicks a song, the song’s name should go at the end of the
playlist (so it will be the last song played), then use the push() method.

Table 2-5. Various ways of adding elements to an array

Method Original array Example code
Resulting
array Explanation

.length
property

 var p =
[0,1,2,3]

 p[p.length]=4 [0,1,2,3,4] Adds one value
to the end of
an array.

push() var p =
[0,1,2,3]

 p.push(4,5,6) [0,1,2,3,4,5,6] Adds one or
more items to
the end of an
array.

unshift() var p =
[0,1,2,3]

 p.unshift(4,5) [4,5,0,1,2,3] Adds one or
more items to
the beginning
of an array.

The push() and unshift() commands return a value. To be specific, once push() and
unshift() complete their tasks, they supply the number of items that are in the array.
Here’s an example:

var p = [0,1,2,3];
var totalItems = p.push(4,5);

After this code runs, the value stored in totalItems is 6, because there are six items
in the p array.

POWER USERS’ CLINIC

Creating a Queue
The methods used to add items to an array—push() and
unshift()—and the methods used to remove items from an
array—pop() and shift()—are often used together to pro-
vide a way of accessing items in the order they were cre-
ated. A classic example is a musical playlist. You create the
list by adding songs to it; then, as you play each song, it’s
removed from the list. The songs are played in the order
they appear in the list, so the first song is played and then
removed from the list. This arrangement is similar to a line
at the movies. When you arrive at the movie theater, you
take your place at the end of the line; when the movie’s
about to begin, the doors open and the first person in line
is the first to get in.

In programming circles, this concept is called FIFO for “First
In, First Out.” You can simulate this arrangement using

arrays and the push() and shift() commands. For example,
say you had an array named playlist. To add a new song to
the end of the list, you’d use push(), like this:

playlist.push('Yellow Submarine');

To get the song that’s supposed to play next, you get the
first item in the list like this:

nowPlaying = playlist.shift();

This code removes the first item from the array and stores
it in a variable named nowPlaying. The FIFO concept is use-
ful for creating and managing queues such as a playlist, a
to-do list, or a slideshow of images.

66 javascript & jquery: the missing manual

Tutorial: Writing to
a Web Page Using
Arrays

Deleting	Items	from	an	Array
If you want to remove an item from the end or beginning of an array, use the pop()
or shift() commands. Both commands remove one item from the array: The pop()
command removes the item from the end of the array, while shift() removes one item
from the beginning. Table 2-6 compares the two methods.

Table 2-6. Two ways of removing an item from an array

Method Original array Example code
Resulting
array Explanation

pop() var p =
[0,1,2,3]

p.pop() [0,1,2] Removes the last
item from the
array.

shift() var p =
[0,1,2,3]

p.shift() [1,2,3] Removes the first
item from the
array.

As with push() and unshift(), pop() and shift() return a value once they’ve completed
their tasks of removing an item from an array. In fact, they return the value that they
just removed. So, for example, this code removes a value and stores it in the variable
removedItem:

var p = [0,1,2,3];
var removedItem = p.pop();

The value of removedItem after this code runs is 3 and the array p now contains
[0,1,2].

Note: This chapter’s files include a web page that lets you interactively test out the different array com-
mands. It’s named array_methods.html and it’s in the testbed folder. Open the file in a web browser and
click the various buttons on the web page to see how the array methods work. (By the way, all the cool
interactivity of that page is thanks to JavaScript.)

Tutorial: Writing to a Web Page Using Arrays
You’ll use arrays in many of the scripts in this book, but to get a quick taste of creat-
ing and using arrays, try this short tutorial.

Note: See the note on page 29 for information on how to download the tutorial files.

1. In a text editor, open the file arrays.html in the chapter02 folder.
You’ll start by simply creating an array containing four strings. As with the
previous tutorial, this file already contains <script> tags in both the head and
body regions.

67chapter 2: the grammar of javascript

Tutorial: Writing to
a Web Page Using

Arrays
2. Between the first set of <script> tags, type the bolded code:

<script>
var authors = ['Ernest Hemingway',
 'Charlotte Bronte',
 'Dante Alighieri',
 'Emily Dickinson'
];
</script>

This code comprises a single JavaScript statement, but it’s broken over five lines.
To create it, type the first line—var authors = [‘Ernest Hemingway’,—hit Return,
then press the Space bar until you line up under the ‘ (about 16 spaces), and
then type ‘Charlotte Bronte’,.

Note: Most HTML editors use a monospaced font like Courier or Courier New for your HTML and
JavaScript code. In a monospaced font, each character is the same width as every other character, so it’s
easy to line up columns (like all the author names in this example). If your text editor doesn’t use Courier
or something similar, you may not be able to line up the names perfectly.

As mentioned on page 61, when you create an array with lots of elements, you
can make your code easier to read if you break it over several lines. You can tell
it’s a single statement since there’s no semicolon until the end of line 5.
This line of code creates an array named authors and stores the names of four
authors (four string values) into the array. Next, you’ll access an element of
the array.

3. Locate the second set of <script> tags, and add the code in bold:
<script>
document.write('<p>The first author is ');
document.write(authors[0] + '</p>');
</script>

The first line starts a new paragraph with some text and an opening
tag—just plain HTML. The next line prints the value stored in the first item
of the authors array and prints the closing and </p> tags to create a
complete HTML paragraph. To access the first item in an array, you use a 0 as
the index—authors[0]—instead of 1.
At this point, it’s a good idea to save your file and preview it in a web browser.
You should see “The first author is Ernest Hemingway” printed on the screen.
If you don’t, you may have made a typo when you created the array in either
step 2 or 3.

Note: Remember to use the error console in your browser (described on page 34) to help you locate the
source of any JavaScript errors.

68 javascript & jquery: the missing manual

Tutorial: Writing to
a Web Page Using
Arrays

4. Return to your text editor and add these two lines of code below to your script:
document.write('<p>The last author is ');
document.write(authors[4] + '</p>');

This step is pretty much the same as the previous one, except that you’re print-
ing a different array item. Save the page and preview it in a browser. You’ll see
“undefined” in place of an author’s name (see Figure 2-6). Don’t worry; that’s
intentional. Remember that an array’s index values begin at 0, so the last item
is actually the total number of items in the array minus 1. In this case, there are
four strings stored in the authors array, so that last item would actually be ac-
cessed with authors[3].

Note: If you try to read the value of an item using an index value that doesn’t exist, you’ll end up with the
JavaScript “undefined” value. All that means is that there’s no value stored in that index position.

Fortunately, there’s an easy technique for retrieving the last item in an array no
matter how many items are stored in the array.

Figure 2-6:
If you try to access an
array element that
doesn’t exist, then
you’ll end up with the
value “undefined.”

69chapter 2: the grammar of javascript

Tutorial: Writing to
a Web Page Using

Arrays
5. Return to your text editor and edit the code you just entered. Erase the 4 and

add the bolded code in its place:
document.write('<p>The last author is ');
document.write(authors[authors.length-1] + '</p>');

As you’ll recall from “Adding Items to an Array,” an array’s length property
stores the number of items in the array. So the total number of items in the
authors array can be found with this code: authors.length. At this point in the
script, that turns out to be 4.
Knowing that the index value of the last item in an array is always 1 less than
the total number of items in an array, you just subtract one from the total
to get the index number of the last item: authors.length-1. You can provide
that little equation as the index value when accessing the last item in an array:
authors[authors.length-1].
You’ll finish up by adding one more item to the beginning of the array.

6. Add another line of code after the ones you added in step 5:
authors.unshift('Stan Lee');

As you read on page 64, the unshift() method adds one or more items to the
beginning of an array. After this line of code runs, the authors array will
now be [‘Stan Lee’, ‘Ernest Hemingway’, ‘Charlotte Bronte’, ‘Dante Alighieri’,
‘Emily Dickinson’].
Finally, you’ll print out the newly added item on the page.

7. Add three more lines (bolded below) so that your final code looks like this:
document.write('<p>The first author is ');
document.write(authors[0] + '</p>');
document.write('<p>The last author is ');
document.write(authors[authors.length-1] + '</p>');
authors.unshift('Stan Lee');
document.write('<p>I almost forgot ');
document.write(authors[0]);
document.write('</p>');

Save the file and preview it in a web browser. You should see something like
Figure 2-7. If you don’t, remember that the error console in your web browser
can help you locate the error (page 34).

70 javascript & jquery: the missing manual

A Quick Object
Lesson

Figure 2-7:
OK, Stan Lee may
not be your idea of
a literary giant, but
at least he’s helping
you learn how arrays
work.

A Quick Object Lesson
So far in this book, you’ve learned that you can write something to a web page with
the document.write() command, and to determine how many items are in an array,
you type the name of the array followed by a period and the word “length,” like so:
days.length. You’re probably wondering what those periods are about. You’ve made
it through three chapters without learning the particulars of this feature of JavaScript
syntax, and it’s time to address them.

You can conceptualize many of the elements of the JavaScript language, as well as
elements of a web page, as objects. The real world, of course, is filled with objects too,
such as a dog or a car. Most objects are made up of different parts: A dog has a tail, a
head, and four legs; a car has doors, wheels, headlights, a horn; and so on. An object
might also do something—a car can transport passengers, a dog can bark. In fact,
even a part of an object can do something: For example, a tail can wag, and a horn
can honk. Table 2-7 illustrates one way to show the relationships between objects,
their parts, and actions.

Table 2-7. A simplified view of the world

Object Parts Actions
dog bark

tail wag

car transport

horn honk

71chapter 2: the grammar of javascript

A Quick Object
Lesson

The world of JavaScript is also filled with objects: a browser window, a document,
a string, a number, and a date are just a few examples. Like real-world objects, Java-
Script objects are also made up of different parts. In programming-speak, the parts
of an object are called properties. The actions an object can perform are called
methods, which are functions (like the built-in alert() function) that are specific to
an object (see Table 2-8).

Note: You can always tell a method from a property because methods end in parentheses: write(),
for example.

Each object in JavaScript has its own set of properties and methods. For example,
the array object has a property named length, and the document object has a method
named write(). To access an object’s property or execute one of its methods, you use
dot-syntax—those periods! The dot (period) connects the object with its property or
method. For example, document.write() means “run the write() method of the docu-
ment object.” If the real world worked like that, you’d have a dog wag his tail like this:
dog.tail.wag(). (Of course, in the real world, a doggy treat works a lot better.)

Table 2-8. Some methods and properties of two JavaScript objects: the document object and an array.

Object Property Method
document title

url

write()

[‘Kate’,’Graham’,’Sam’] length

push()

pop()

unshift()

And just as you might own several dogs in the real world, your JavaScript programs
can have multiple versions of the same kind of object. For example, say you create
two simple variables like this:

var first_name = 'Jack';
var last_name = 'Hearts';

You’ve actually created two different string objects. Strings have their own set of
properties and methods, which are different from the methods and properties of
other objects, like dates (you'll learn some of these properties and methods on page
450). When you create an object (also called creating an instance of that object), you
can access all of the properties and methods for that object.

72 javascript & jquery: the missing manual

Comments

Note: You’ve already encountered another object—called the window object—which represents the
browser window itself. It’s basically the container object for a web page and everything else on the page.
For example, alert() and prompt() are both methods of the window object and can be written like this:
window.alert() and window.prompt(). However, since the window object is always present in a web page,
you can leave its name out, so alert(‘hello’) and window.alert(‘hello’) do the same thing.

Whenever you create a new variable and store a value into it, you’re really creating a
new instance of a particular type of object. So each of these lines of JavaScript create
different types of JavaScript objects:

var first_name = 'Bob'; // a string object
var age = 32; // a number object
var valid = false; // a Boolean object

In fact, when you change the type of information stored in a variable, you change
the type of object it is as well. For example, if you create a variable named data that
stores an array, then store a number in the variable, you’ve changed that variable’s
type from an array to a number object:

var data = false; // an Boolean object
data = 32; //changes to number object

The concepts of objects, properties, methods, and dot-syntax may seem a little weird
at first glance. However, since they are fundamental parts of how JavaScript works,
and integral to using jQuery as well, you’ll get used to them pretty quickly.

Tip: JavaScript includes a special keyword for determining the type of an object (string, number, Boolean,
and so on.) It’s called the typeof operator and is placed before a variable to determine the type of object
inside that variable. For example:

var data = 32;

alert(typeof data); // "number" appears in alert window

As you continue reading this book, keep these few facts in mind:

• The world of JavaScript is populated with lots of different types of objects.
• Each object has its own properties and methods.
• You access an object’s property or activate an object’s method using dot-syntax:

document.write(), for example.

Comments
There are times when you’re in the midst of programming and you feel like you
understand everything that’s going on in your program. Every line of code makes
sense, and better yet, it works! But a month or two later, when your boss or a client
asks you to make a change or add a new feature to that cool script you wrote, you
might find yourself scratching your head the moment you look at your once-familiar
JavaScript: What’s that variable for? Why’d I program it like that? What’s going on in
this section of the program?

73chapter 2: the grammar of javascript

Comments

It’s easy to forget how a program works and why you wrote your code the way you
did. Fortunately, most programming languages provide a way for programmers to
leave notes for themselves or other programmers who might look through their code.
JavaScript lets you leave comments throughout your code. If you’ve used HTML or
CSS comments, these should feel familiar. A comment is simply a line or more worth
of notes: The JavaScript interpreter ignores them, but they can provide valuable in-
formation on how your program works.

To create a single line comment, precede the comment with double forward slashes:
// this is a comment

You can also add a comment after a JavaScript statement:
var price = 10; // set the initial cost of the widget

The JavaScript interpreter executes everything on this line until it reaches the //, and
then it skips to the beginning of the next line.

You can also add several lines worth of comments by beginning the comments with
/* and ending them with */. (These are the same type of comments CSS uses.) The
 JavaScript interpreter ignores all of the text between these two sets of symbols. For
example, say you want to give a description of how a program works at the beginning
of your code. You can do that like this:

/*
 JavaScript Slideshow:
 This program automates the display of
 images in a pop-up window.
*/

You don’t need to leave the /* and */ on their own lines, either. In fact, you can create
a single line JavaScript comment with them:

/* this is a single line comment */

In general, if you want to just write a short, one-line comment, use //. For several
lines of comments, use the /* and */ combination.

When	to	Use	Comments
Comments are an invaluable tool for a program that’s moderately long or complex
and that you want to keep using (and perhaps changing) in the future. While the
simple scripts you’ve learned so far are only a line or two of code, you’ll eventually
be creating longer and much more complex programs. To make sure you can quickly
figure out what’s going on in a script, it’s a good idea to add comments to help you
understand the overall logic of the program and to explain any particularly confusing
or complex bits.

Note: Adding lots of comments to a script makes the script larger (and slower to download). In general,
the amount of comments you’ll add to a script won’t add significantly to the size of the file. But, if you
want to squeeze every unnecessary byte out of your files, page 465 shows you ways to make JavaScript
files smaller and faster.

74 javascript & jquery: the missing manual

Comments

Many programmers add a block of comments at the beginning of an external Java-
Script file. These comments can explain what the script is supposed to do, identify
the date the script was created, include a version number for frequently updated
scripts, and provide copyright information.

For example, at the beginning of the jQuery library’s JavaScript file, you’ll find this
comment:

/*!
 * jQuery JavaScript Library v1.6.3
 * http://jquery.com/
 *
 * Copyright 2011, John Resig
 * Dual licensed under the MIT or GPL Version 2 licenses.
 * http://jquery.org/license
 *
 * Includes Sizzle.js
 * http://sizzlejs.com/
 * Copyright 2011, The Dojo Foundation
 * Released under the MIT, BSD, and GPL Licenses.
 *
 * Date: Wed Aug 31 10:35:15 2011 -0400
 */

At the beginning of the script, you might also include instructions on how to use the
script: variables that might need to be set, anything special you might need to do to
your HTML to make the script work, and so on.

You should also add a comment before a series of complex programming steps. For
example, say you write a script that animates an image across a visitor’s browser
window. One part of that script is determining the image’s current position in the
browser window. This can take several lines of programming; it’s a good idea to place
a comment before that section of the program, so when you look at the script later,
you’ll know exactly what that part of the program does:

// determine x and y positions of image in window

The basic rule of thumb is to add comments anywhere you’ll find them helpful later.
If a line of code is painfully obvious, you probably don’t need a comment. For ex-
ample, there’s no reason to add a comment for simple code like alert(‘hello’), because
it’s pretty obvious what it does (opens an alert box with the word “hello” in it).

Comments	in	This	Book
Comments are also very helpful when explaining JavaScript. In this book, comments
frequently explain what a line of programming does or indicate the results of a par-
ticular statement. For example, you might see a comment like the following to show
the results of an alert statement:

var a = 'Bob';
var b = 'Smith';
alert(a + ' ' + b); // 'Bob Smith';

75chapter 2: the grammar of javascript

Comments

The third line ends with a comment that indicates what you should see when you
preview this code in a web browser. If you want to test the code that you read in this
book by adding it to a web page and viewing it in a web browser, you can leave out
comments like these when typing the code into a web page. These types of com-
ments are intended simply to help you understand what’s happening in the code as
you read along with the book.

Likewise, as you start to learn some of the more complex commands available in
JavaScript, you’ll begin to manipulate the data in variables. You’ll often see com-
ments in this book’s code to display what should be stored in the variable after the
command is run. For example, the charAt() command lets you select a character at
a specific point in a string. When you read about how to use that command in this
book, you might see code like this:

var x = "Now is the time for all good programmers.";
alert(x.charAt(2)); // 'w'

The comment // ‘w’ that appears at the end of the second line indicates what you
should see in an alert dialog box if this code were actually run in a web browser. (And,
yes, ‘w’ is correct. When counting the letters in a string, the first letter is counted as
character 0. So charAt(2) retrieves the third character from the string. Sometimes
programming just hurts your brain.)

77

chapter
3

Adding Logic and Control
to Your Programs

So far you’ve learned about some of JavaScript’s basic building blocks. But sim-
ply creating a variable and storing a string or number in it doesn’t accomplish
much. And building an array with a long list of items won’t be very useful un-

less there’s an easy way to work your way through the items in the array. In this
chapter, you’ll learn how to make your programs react intelligently and work more
efficiently by using conditional statements, loops, and functions.

Making Programs React Intelligently
Our lives are filled with choices: “What should I wear today?”, “What should I eat
for lunch?”, “What should I do Friday night?”, and so on. Many choices you make
depend on other circumstances. For example, say you decide you want to go to the
movies on Friday night. You’ll probably ask yourself a bunch of questions like “Are
there any good movies out?”, “Is there a movie playing at the right time?”, “Do I have
enough money to go to the movies (and buy a $17 bag of popcorn)?”

Suppose there is a movie that’s playing at just the time you want to go. You then ask
yourself a simple question: “Do I have enough money?” If the answer is yes, you’ll
head out to the movie. If the answer is no, you won’t go. But on another Friday, you
do have enough money, so you go to the movies. This scenario is just a simple example
of how the circumstances around us affect the decisions we make.

JavaScript has the same kind of decision-making feature called conditional state-
ments. At its most basic, a conditional statement is a simple yes or no question. If
the answer to the question is yes, your program does one thing; if the answer is no,
it does something else. Conditional statements are one of the most important pro-
gramming concepts: They let your programs react to different situations and behave

78 javascript & jquery: the missing manual

Making Programs
React Intelligently

intelligently. You’ll use them countless times in your programming, but just to get
a clear picture of their usefulness, here are a few examples of how they can come
in handy:

• Form validation. When you want to make sure someone filled out all of the
required fields in a form (“Name,” “Address,” “Email,” and so on), you’ll use
conditional statements. For example, if the Name field is empty, don’t submit
the form.

• Drag and drop. If you add the ability to drag elements around your web page,
you might want to check where the visitor drops the element on the page. For
example, if he drops a picture onto an image of a trash can, you make the photo
disappear from the page.

• Evaluating input. Suppose you pop-up a window to ask a visitor a question like,
“Would you like to answer a few questions about how great this website is?”
You’ll want your script to react differently depending on how the visitor answers
the question.

Figure 3-1 shows an example of an application that uses conditional statements.

Figure 3-1:
It takes a lot of work
to have fun. A JavaS-
cript-based game
like Solitaire (http://
worldofsolitaire
.com) demonstrates
how a program has
to react differently
based on the condi-
tions of the program.
For example, when
a player drags and
drops a card, the
program has to
decide if the player
dropped the card in a
valid location or not,
and then perform
different actions in
each case.

http://worldofsolitaire.com
http://worldofsolitaire.com
http://worldofsolitaire.com

79chapter 3: adding logic and control to your programs

Making Programs
React Intelligently

Conditional	Statement	Basics
Conditional statements are also called “if/then” statements, because they perform a
task only if the answer to a question is true: “If I have enough money, then I’ll go to
the movies.” The basic structure of a conditional statement looks like this:

if (condition) {
 // some action happens here
}

There are three parts to the statement: if indicates that the programming that follows
is a conditional statement; the parentheses enclose the yes or no question, called the
condition (more on that in a moment); and the curly braces ({ }) mark the beginning
and end of the JavaScript code that should execute if the condition is true.

Note: In the code listed above, the “// some action happens here” is a JavaScript comment. It’s not code
that actually runs; it’s just a note left in the program, and, in this case, points out to you, the reader, what’s
supposed to go in that part of the code. See page 72 for more on comments.

In many cases, the condition is a comparison between two values. For example, say
you create a game that the player wins when the score is over 100. In this program,
you’ll need a variable to track the player’s score and, at some point, you need to check
to see if that score is more than 100 points. In JavaScript, the code to check if the
player won could look like this:

if (score > 100) {
 alert('You won!');
}

The important part is score > 100. That phrase is the condition, and it simply tests
whether the value stored in the score variable is greater than 100. If it is, then a “You
won!” dialog box appears; if the player’s score is less than or equal to 100, then the
JavaScript interpreter skips the alert and moves onto the next part of the program.
Figure 3-2 provides a visualization of this process.

Figure 3-2:
With a basic conditional statement, the code inside the braces only
runs if the condition is true. If the condition is false, that code is
skipped and the program continues.

score > 100

noyes

alert('You won!');

program
continues

80 javascript & jquery: the missing manual

Making Programs
React Intelligently

In addition to > (greater than), there are several other operators used to compare
numbers (see Table 3-1).

Tip: Type two spaces (or press the Tab key once) before each line of JavaScript code contained within a
pair of braces. The spaces (or tab) indent those lines and make it easier to see the beginning and ending
brace, and to figure out what code belongs inside the conditional statement. Two spaces is a common
technique, but if four spaces make your code easier for you to read, then use four spaces. The examples
in this book always indent code inside braces.

Table 3-1. Use these comparison operators to test values as part of a conditional statement

Comparison
operator What it means
= = Equal	to. Compares two values to see if they’re the same. Can be used to

compare numbers or strings.

!= Not	equal	to. Compares two values to see if they’re not the same. Can be used
to compare numbers or strings.

= = = Strict	equal	to. Compares not only the values but also the type of the value.
In other words, the two values must also share the same type—string, number,
or Boolean—in order for the condition to be true. For example, while ‘2’==2
is true, ‘2’ = = = 2 is not true, because the first value is inside quote marks (a
string) and the second is a number. You should be careful with this operator,
since values in forms—even numbers—are always strings, so using strict equality
to compare a number retrieved from a form field to a number using strict
equality (‘2’ = = = 2) will be false.

!= = Strict	not	equal	to. Like strict equal to compare values and type. For example,
while ‘2’ != 2 is false, ‘2’ != = 2 is true, because although the values are the
same, the types are not.

> Greater	than. Compares two numbers and checks if the number on the left
side is greater than the number on the right. For example, 2 > 1 is true, since 2
is a bigger number than 1, but 2 > 3 is false, since 2 isn’t bigger than 3.

< Less	than. Compares two numbers and checks if the number on the left side
is less than the number on the right. For example, 2 < 3 is true, since 2 is a
smaller number than 3, but 2 < 1 is false, since 2 isn’t less than 1.

>= Greater	than	or	equal	to. Compares two numbers and checks if the number
on the left side is greater than or the same value as the number on the right.
For example, 2 >= 2 is true, since 2 is the same as 2, but 2 >= 3 is false, since 2
isn’t a bigger number 3, nor is it equal to 3.

<= Less	than	or	equal	to. Compares two numbers and checks if the number
on the left side is less than or the same value as the number on the right. For
example, 2 <= 2 is true, since 2 is the same as 2, but 2 <= 1 is false, since 2 isn’t
a smaller number than 1, nor is 2 equal to 1.

More frequently, you’ll test to see if two values are equal or not. For example, say you
create a JavaScript-based quiz, and one of the questions asks, “How many moons
does Saturn have?” The person’s answer is stored in a variable named answer. You
might then write a conditional statement like this:

81chapter 3: adding logic and control to your programs

Making Programs
React Intelligently

if (answer == 31) {
 alert('Correct. Saturn has 31 moons.');
}

The double set of equal signs (==) isn’t a typo; it instructs the JavaScript interpreter
to compare two values and decide whether they’re equal. As you learned in the last
chapter, in JavaScript, a single equal sign is the assignment operator that you use to
store a value into a variable:

var score = 0; //stores 0 into the variable score

Because the JavaScript interpreter already assigns a special meaning to a single equal
sign, you need to use two equal signs whenever you want to compare two values to
determine if they’re equal or not.

You can also use the == (called the equality operator) to check to see if two strings
are the same. For example, say you let the user type a color into a form, and if he
types red, then you change the background color of the page to red. You could use
the conditional operator for that:

if (enteredColor == 'red') {
 document.body.style.backgroundColor='red';
}

Note: In the code above, don’t worry right now about how the page color is changed. You’ll learn how to
dynamically control CSS properties using JavaScript on page 143.

You can also test to see if two values aren’t the same using the inequality operator:
if (answer != 31) {
 alert("Wrong! That's not how many moons Saturn has.");
}

The exclamation mark translates to “not”, so != means “not equal to.” In this example,
if the value stored in answer is not 31, then the poor test taker would see the insulting
alert message.

The code that runs if the condition is true isn’t limited to just a single line of code
as in the previous examples. You can have as many lines of JavaScript between the
opening and closing curly braces as you’d like. For example, as part of the JavaScript
quiz example, you might keep a running tally of how many correct answers the test-
taker gets. So, when the Saturn question is answered correctly, you also want to add
1 to the test-taker’s total. You would do that as part of the conditional statement:

if (answer == 31) {
 alert('Correct. Saturn has 31 moons.');
 numCorrect += 1;
}

Note: As described on page 54, the line of code above—numCorrect += 1—simply adds 1 to the value
currently in the variable numCorrect.

82 javascript & jquery: the missing manual

Making Programs
React Intelligently

And you could add additional lines of JavaScript code between the braces as well—
any code that should run if the condition is true.

Adding	a	Backup	Plan
But what if the condition is false? The basic conditional statement in the previous
section doesn’t have a backup plan for a condition that turns out to be false. In the
real world, as you’re deciding what to do Friday night and you don’t have enough
money for the movies, you’d want to do something else. An if statement has its own
kind of backup plan, called an else clause. For example, say as part of the JavaScript
testing script, you want to notify the test-taker if he gets the answer right, or if he gets
it wrong. Here’s how you can do that:

POWER USERS’ CLINIC

The Return of the Boolean
On page 44, you learned about the Boolean values—true
and false. Booleans may not seem very useful at first, but
you’ll find out they’re essential when you start using con-
ditional statements. In fact, since a condition is really just a
yes or no question, the answer to that question is a Bool-
ean value. For example, check out the following code:

var x = 4;

if (x == 4) {

 //do something

}

The first line of code stores the number 4 into the variable
x. The condition on the next line is a simple question: Is
the value stored in x equal to 4? In this case, it is, so the
JavaScript between the curly braces runs. But here’s what
really happens in between the parentheses: The JavaScript
interpreter converts the condition into a Boolean value; in
programming-speak, the interpreter evaluates the condi-
tion. If the condition evaluates to true (meaning the answer
to the question is yes), then the code between the braces
runs. However, if the condition evaluates to false, then the
code in the braces is skipped.

One common use of Booleans is to create what’s called a
flag—a variable that marks whether something is true. For

example, when validating a form full of visitor-submitted
information, you might start by creating a valid variable
with a Boolean value of true—this means you’re assum-
ing, at first, that they filled out the form correctly. Then,
you’d run through each form field, and if any field is miss-
ing information or has the wrong type of information, you
change the value in valid to false. After checking all of the
form fields, you test what’s stored in valid, and if it’s still
true, you submit the form. If it’s not true (meaning one or
more form fields were left blank), you display some error
messages and prevent the form from submitting:

var valid = true;

// lot of other programming gunk happens
in here

// if a field has a problem then you set
valid to false

if (valid) {

 //submit form

} else {

 //print lots of error messages

}

83chapter 3: adding logic and control to your programs

Making Programs
React Intelligently

if (answer == 31) {
 alert('Correct. Saturn has 31 moons.');
 numCorrect = numCorrect + 1;
} else {
 alert("Wrong! That's not how many moons Saturn has.");
}

This code sets up an either/or situation; only one of the two messages will appear
(see Figure 3-3). If the number 31 is stored in the variable answer, then the “correct”
alert appears; otherwise, the “wrong” alert appears.

To create an else clause, just add “else” after the closing brace for the conditional
statement followed by another pair of braces. You add the code that should execute
if the condition turns out to be false in between the braces. Again, you can have as
many lines of code as you’d like as part of the else clause.

Figure 3-3:
When using an if else condition, you include two
sets of code, but only one set will ever run. If
the condition is true, then the code in the braces
immediately following the condition runs (left);
however, of the condition is false, then the code in
the braces following the “else” runs (right).

answer==31

noyes

 alert('Correct.');
 numCorrect += 1;

program
continues

alert('Wrong!');

Testing	More	Than	One	Condition
Sometimes you’ll want to test several conditions and have several possible outcomes:
Think of it like a game show where the host says, “Would you like the prize behind
door #1, door #2, or door #3?” You can only pick one. In your day-to-day activities,
you also are often faced with multiple choices like this one.

For example, return to the “What should I do Friday night?” question. You could
expand your entertainment options based on how much money you have and are
willing to spend. For example, you could start off by saying, “If I have more than $50,
I’ll go out to a nice dinner and a movie (and have some popcorn too).” If you don’t
have $50, you might try another test: “If I have $35 or more, I’ll go to a nice dinner.” If
you don’t have $35, then you’d say, “If I have $12 or more, I’ll go to the movies.” And
finally, if you don’t have $12, you might say, “Then I’ll just stay at home and watch
TV.” What a Friday night!

84 javascript & jquery: the missing manual

Making Programs
React Intelligently

JavaScript lets you perform the same kind of cascading logic using else if statements.
It works like this: You start with an if statement, which is option number 1; you then
add one or more else if statements to provide additional questions that can trigger
additional options; and finally, you use the else clause as the fallback position. Here’s
the basic structure in JavaScript:

if (condition) {
 // door #1
} else if (condition2) {
 // door #2
} else {
 // door #3
}

This structure is all you need to create a JavaScript “Friday night planner” program.
It asks visitors how much money they have, and then determines what they should
do on Friday (sound familiar?). You can use the prompt() command that you learned
about on page 57 to collect the visitor’s response and a series of if/else if statements
to determine what he should do:

var fridayCash = prompt('How much money can you spend?', '');
if (fridayCash >= 50) {
 alert('You should go out to a dinner and a movie.');
} else if (fridayCash >= 35) {
 alert('You should go out to a fine meal.');
} else if (fridayCash >= 12) {
 alert('You should go see a movie.');
} else {
 alert('Looks like you will be watching TV.');
}

Here’s how this program breaks down step-by-step: The first line opens a prompt
dialog box asking the visitor how much he can spend. Whatever the visitor types is
stored in a variable named fridayCash. The next line is a test: Is the value the visitor
typed 50 or more? If the answer is yes, then an alert appears, telling him to go get a
meal and see a movie. At this point, the entire conditional statement is done. The
JavaScript interpreter skips the next else if statement, the following else if statement,
and the final else clause. With a conditional statement, only one of the outcomes
can happen, so once the JavaScript interpreter encounters a condition that evaluates
to true, it runs the JavaScript code between the braces for that condition and skips
everything else within the conditional statement (see Figure 3-4).

85chapter 3: adding logic and control to your programs

Making Programs
React Intelligently

Figure 3-4:
With a basic
conditional state-
ment, the code
inside the braces
only runs if the
condition is true.
If the condition is
false, that code
is skipped and
the program
continues

fridayCash >= 50

noyes

 alert('You should
go out to a dinner

and a movie.');

program
continues

fridayCash >= 35

noyes

 alert('You should
go out to

a fine meal.');
fridayCash >= 12

noyes

 alert('You should
go see a movie.');

 alert('Looks like
you'll be

 watching TV.);

Suppose the visitor typed 25. The first condition, in this case, wouldn’t be true, since
25 is a smaller number than 50. So the JavaScript interpreter skips the code within
the braces for that first condition and continues to the else if statement: “Is 25 greater
than or equal to 35?” Since the answer is no, it skips the code associated with that
condition and encounters the next else if. At this point, the condition asks if 25 is
greater than or equal to 12; the answer is yes, so an alert box with the message, “You
should go see a movie” appears and the program ends, skipping the final else clause.

Tip: There’s another way to create a series of conditional statements that all test the same variable, as in
the fridayCash example. Switch statements do the same thing, and you’ll learn about them on page 462.

86 javascript & jquery: the missing manual

Making Programs
React Intelligently

More	Complex	Conditions
When you’re dealing with many different variables, you’ll often need even more
complex conditional statements. For example, when validating a required email ad-
dress field in a form, you’ll want to make sure both that the field isn’t empty and that
the field contains an email address (and not just random typed letters). Fortunately,
JavaScript lets you do these kinds of checks as well.

Making sure more than one condition is true
You’ll often need to make decisions based on a combination of factors. For example,
you may only want to go to a movie if you have enough money and there’s a movie
you want to see. In this case, you’ll go only if two conditions are true; if either one
is false, then you won’t go to the movie. In JavaScript, you can combine conditions
using what’s called the logical AND operator, which is represented by two amper-
sands (&&). You can use it between the two conditions within a single conditional
statement. For example, if you want to check if a number is between 1 and 10, you
can do this:

if (a < 10 && a > 1) {
 //the value in a is between 1 and 10
 alert("The value " + a + " is between 1 and 10");
}

In this example, there are two conditions: a < 10 asks if the value stored in the vari-
able a is less than 10; the second condition, a > 1, is the same as “Is the value in a
greater than 1?” The JavaScript contained between the braces will run only if both
conditions are true. So if the variable a has the number 0 stored in it, the first con-
dition (a < 10) is true (0 is less than 10), but the second condition is false (0 is not
greater than 1).

You’re not limited to just two conditions. You can connect as many conditions as you
need with the && operator:

if (b>0 && a>0 && c>0) {
 // all three variables are greater than 0
}

This code checks three variables to make sure all three have a value greater than 0. If
just one has a value of 0 or less, then the code between the braces won’t run.

Making sure at least one condition is true
Other times you’ll want to check a series of conditions, but you only need one to be
true. For example, say you’ve added a keyboard control for visitors to jump from pic-
ture to picture in a photo gallery. When the visitor presses the N key, the next photo
appears. In this case, you want her to go to the next picture when she types either n
(lowercase), or if she has the Caps Lock key pressed, N (uppercase). You’re looking
for a kind of either/or logic: Either this key or that key was pressed. The logical OR
operator, represented by two pipe characters (||), comes in handy:

if (key == 'n' || key == 'N') {
 //move to the next photo
}

87chapter 3: adding logic and control to your programs

Making Programs
React Intelligently

Note: To type a pipe character, press Shift-\. The key that types both backslashes and pipe characters is
usually located just above the Return key.

With the OR operator, only one condition needs to be true for the JavaScript that
follows between the braces to run.

As with the AND operator, you can compare more than two conditions. For example,
say you’ve created a JavaScript racing game. The player has a limited amount of time,
a limited amount of gas, and a limited number of cars (each time he crashes, he loses
one car). To make the game more challenging, you want it to come to an end when
any of these three things runs out:

if (gas <= 0 || time <= 0 || cars <= 0) {
 //game is over
}

When testing multiple conditions, it’s sometimes difficult to figure out the logic
of the conditional statement. Some programmers group each condition in a set of
parentheses to make the logic easier to grasp:

 if ((key == 'n') || (key == 'N')) {
 //move to the next photo
}

To read this code, simply treat each grouping as a separate test; the results of the
operation between parentheses will always turn out to be either true or false.

Negating a condition
If you’re a Superman fan, you probably know about Bizarro, an anti-hero who lived
on a cubical planet named Htrae (Earth spelled backwards), had a uniform with a
backwards S, and was generally the opposite of Superman in every way. When Bizarro
said “Yes,” he really meant “No,” and when he said “No,” he really meant “Yes.”

JavaScript programming has an equivalent type of character called the NOT opera-
tor, which is represented by an exclamation mark (!). You’ve already seen the NOT
operator used along with the equal sign to indicate “not equal to”: !=. But the NOT
operator can be used by itself to completely reverse the results of a conditional
statement; in other words, it can make false mean true, and true mean false.

You use the NOT operator when you want to run some code based on a negative
condition. For example, say you’ve created a variable named valid that contains a
Boolean value of either true or false (see the box on page 82). You use this variable
to track whether a visitor correctly filled out a form. When the visitor tries to submit
the form, your JavaScript checks each form field to make sure it passes the require-
ments you set up (for example, the field can’t be empty and it has to have an email
address in it). If there’s a problem, like the field is empty, you could then set valid to
false (valid = false).

Now if you want to do something like print out an error and prevent the form from
being submitted, you can write a conditional statement like this:

88 javascript & jquery: the missing manual

Making Programs
React Intelligently

if (! valid) {
 //print errors and don't submit form
}

The condition ! valid can be translated as “if not valid,” which means if valid is false,
then the condition is true. To figure out the results of a condition that uses the NOT
operator, just evaluate the condition without the NOT operator, then reverse it. In
other words, if the condition results to true, the ! operator changes it to false, so the
conditional statement doesn’t run.

As you can see, the NOT operator is very simple to understand (translated from
Bizarro-speak: It’s very confusing, but if you use it long enough, you’ll get used to it).

Nesting	Conditional	Statements
In large part, computer programming entails making decisions based on informa-
tion the visitor has supplied or on current conditions inside a program. The more
decisions a program makes, the more possible outcomes and the “smarter” the pro-
gram seems. In fact, you might find you need to make further decisions after you’ve
gone through one conditional statement.

Suppose, in the “What to do on Friday night?” example, you want to expand the
program to include every night of the week. In that case, you need to first determine
what day of the week it is, and then figure out what to do on that day. So you might
have a conditional statement asking if it’s Friday, and if it is, you’d have another series
of conditional statements to determine what to do on that day:

if (dayOfWeek == 'Friday') {
 var fridayCash = prompt('How much money can you spend?', '');
 if (fridayCash >= 50) {
 alert('You should go out to a dinner and a movie.');
 } else if (fridayCash >= 35) {
 alert('You should go out to a fine meal.');
 } else if (fridayCash >= 12) {
 alert('You should go see a movie.');
 } else {
 alert('Looks like you will be watching TV.');
 }
}

In this example, the first condition asks if the value stored in the variable dayOfWeek is
the string ‘Friday’. If the answer is yes, then a prompt dialog box appears, gets some
information from the visitor, and another conditional statement is run. In other
words, the first condition (dayOfWeek == ‘Friday’) is the doorway to another series
of conditional statements. However, if dayOfWeek isn’t ‘Friday’, then the condition is
false and the nested conditional statements are skipped.

Tips	for	Writing	Conditional	Statements
The example of a nested conditional statement in the last section may look a little
scary. There are lots of (), {}, elses, and ifs. And if you happen to mistype one of the

89chapter 3: adding logic and control to your programs

Tutorial: Using
Conditional
Statements

crucial pieces of a conditional statement, your script won’t work. There are a few
things you can do as you type your JavaScript that can make it easier to work with
conditional statements.

• Type both of the curly braces before you type the code inside them. One of the
most common mistakes programmers make is forgetting to add a final brace
to a conditional statement. To avoid this mistake, type the condition and the
braces first, then type the JavaScript code that executes when the condition is
true. For example, start a conditional like this:
if (dayOfWeek=='Friday') {

}

In other words, type the if clause and the first brace, hit Return twice, and then
type the last brace. Now that the basic syntax is correct, you can click in the
empty line between the braces and add JavaScript.

• Indent code within braces. You can better visualize the structure of a condi-
tional statement if you indent all of the JavaScript between a pair of braces:
if (a < 10 && a > 1) {
 alert("The value " + a + " is between 1 and 10");
}

By using several spaces (or pressing the Tab key) to indent lines within braces,
it’s easier to identify which code will run as part of the conditional statement. If
you have nested conditional statements, indent each nested statement:
if (a < 10 && a > 1) {
 //first level indenting for first conditional
 alert("The value " + a + " is between 1 and 10");
 if (a==5) {
 //second level indenting for 2nd conditional
 alert(a + " is half of ten.");
 }
}

• Use == for comparing equals. When checking whether two values are equal,
don’t forget to use the equality operator, like this:
if (name == 'Bob') {

A common mistake is to use a single equal sign, like this:
if (name = 'Bob') {

A single equal sign stores a value into a variable, so in this case, the string “Bob”
would be stored in the variable name. The JavaScript interpreter treats this step
as true, so the code following the condition will always run.

Tutorial: Using Conditional Statements
Conditional statements will become part of your day-to-day JavaScript toolkit. In
this tutorial, you’ll try out conditional statements to control how a script runs.

Note: See the note on page 29 for information on how to download the tutorial files.

90 javascript & jquery: the missing manual

Tutorial: Using
Conditional
Statements

1. In a text editor, open the file conditional.html in the chapter03 folder.
You’ll start by simply prompting the visitor for a number. This file already
contains <script> tags in both the head and body regions.

2. Between the first set of <script> tags, in the page’s <head> section, type the
code in bold:
<script>
var luckyNumber = prompt('What is your lucky number?','');
</script>

This line of code opens a JavaScript prompt dialog box, asks a question, and
stores whatever the visitor typed into the luckyNumber variable. Next, you’ll
add a conditional statement to check what the visitor typed into the prompt
dialog box.

3. Locate the second set of <script> tags down in the body of the page, and add
the code in bold:
<script>
if (luckyNumber == 7) {
</script>

Here’s the beginning of the conditional statement; it simply checks to see if the
visitor typed 7.

4. Press Return twice and type the closing brace, so that the code looks like this:
<script>
if (luckyNumber == 7) {

}
</script>

The closing brace ends the conditional statement. Any JavaScript you add be-
tween the two braces will only run if the condition is true.

Note: As mentioned on page 89, it’s a good idea to add the closing brace before writing the code that
runs as part of the conditional statement.

5. Click into the empty line above the closing brace. Hit the Space bar twice
and type:
document.write("<p>Hey, 7 is my lucky number too!</p>");

The two spaces before the code indent the line so you can easily see that this
code is part of the conditional statement. The actual JavaScript here should feel
familiar by now—it simply writes a message to the page.

6. Save the file and preview it in a web browser. Type 7 when the prompt dialog
box appears.
You should see the message “Hey, 7 is my lucky number too!” below the head-
line when the page loads. If you don’t, go over your code and make sure you
typed it correctly (see page 34 for tips on dealing with a broken script). Reload
the page, but this time type a different number. This time, nothing appears un-
derneath the headline. You’ll add an else clause to print another message.

91chapter 3: adding logic and control to your programs

Tutorial: Using
Conditional
Statements

Note: Why two sets of script tags? When using the document.write() method to add content to a page,
you have to place the document.write() code in the exact position on the page you want the message
to appear—in this case, in the body below the <h1> tag. The first set of script tags appears in the head,
because you want the prompt window to appear earlier. If you move the prompt() method down in the
body (go ahead and try it), you’ll see that when the page loads, only a part of the page gets displayed
when the prompt appears. Because the JavaScript at that point runs immediately, before any of the other
parts of the pages displays, the web browser has to wait until the visitor fills out the prompt window
before it can display the rest of the page. In other words, the page looks weird. However, by putting the
prompt up in the <head> section, the page starts off blank, when the prompt window appears—it just
looks a little better. In the next chapter, you’ll learn how to add content to any spot on a page without
using the document.write() method. Once you know that technique, you can keep all of your JavaScript
code together in one location on the page.

7. Return to your text editor, and add the bolded text to your page:
<script>
if (luckyNumber == 7) {
 document.write("<p>Hey, 7 is my lucky number too!</p>");
} else {
 document.write("<p>The number " + luckyNumber + " is lucky for you!</p>");
}
</script>

The else clause provides a backup message, so that if the visitor doesn’t type
7, she’ll see a different message that includes her lucky number. To round out
this exercise, you’ll add an else if statement to test more values and provide
another message.

8. Add the two bolded lines below to your script:
<script>
if (luckyNumber == 7) {
 document.write("<p>Hey, 7 is my lucky number too!</p>");
} else if (luckyNumber == 13 || luckyNumber == 24) {
 document.write("<p>Wooh. " + luckyNumber + "? That's an unlucky number!</p>");
} else {
 document.write("<p>The number " + luckyNumber + " is lucky for you!</p>");
}
</script>

At this point, the script first checks to see if 7 is stored in the variable luckyNum-
ber; if luckyNumber holds a value other than 7, then the else if kicks in. This
conditional statement is made up of two conditions, luckyNumber == 13 and
luckyNumber == 24. The ||, called the logical OR operator, makes the entire
conditional statement turn out to be true if either of the conditions are true. So
if the visitor types in 13 or 24, a “That’s an unlucky number” message is printed
to the page.

Note: You add the logical OR operator by typing Shift-\ twice to get ||.

92 javascript & jquery: the missing manual

Tutorial: Using
Conditional
Statements

Preview the page in a web browser, and type 13 when the prompt dialog box
appears. Press the browser’s reload button, and try different numbers as well as
letters or other characters. You’ll notice that if you type a word or other non-
number character, the final else clause kicks in, printing a message like, “The
number asdfg is lucky for you!” Since that doesn’t make a lot of sense, you’ll pop
up another prompt dialog box if your visitor enters a non-number the first time.

9. Return to your text editor, and locate the first set of <script> tags in the
<head> of the page. Add the code in bold:
<script>
var luckyNumber = prompt('What is your lucky number?','');
luckyNumber = parseInt(luckyNumber, 10);
</script>

This line of code runs the value of luckyNumber through a function named
parseInt(). This JavaScript command takes a value and tries to convert it to an
integer, which is a whole number like 1, 5, or 100. You can learn about this com-
mand on page 464, but for now just realize that if the visitor types in text like “ha
ha,” the parseInt() command won’t be able to convert that to a number; instead,
the command will provide a special JavaScript value, NaN, which stands for
“not a number.” You can use that information to pop up another prompt dialog
box if a number isn’t entered the first time.

10. Add the bolded code to your script:
<script>
var luckyNumber = prompt('What is your lucky number?','');
luckyNumber = parseInt(luckyNumber);
if (isNaN(luckyNumber)) {
 luckyNumber = prompt('Please, tell me your lucky number.','');
}
</script>

Here again, a conditional statement comes in handy. The condition
isNaN(luckyNumber) uses another JavaScript command that checks to see if
something is a number. Specifically, it checks to see if the value in luckyNumber
is not a number. If the value isn’t a number (for example, the visitor types askls-
dkl), a second prompt appears and asks the question again. If the visitor did type
a number, the second prompt is skipped.

Save the page and preview it in a web browser again. This time, type a word and click
OK when the prompt dialog box appears. You should then see a second prompt.
Type a number this time. Of course, this script assumes the visitor made an hon-
est mistake by typing a word the first time, but won’t make the same mistake twice.
Unfortunately, if the visitor types a word in the second prompt, you end up with the
same problem—you’ll learn how to fix that in the next section.

Note: You’ll find a completed version of this tutorial in the chapter03 tutorial folder: complete_
conditional.html.

93chapter 3: adding logic and control to your programs

Handling Repetitive
Tasks with Loops

Handling Repetitive Tasks with Loops
Sometimes a script needs to repeat the same series of steps over and over again. For
example, say you have a web form with 30 text fields. When the user submits the
form, you want to make sure that none of the fields are empty. In other words, you
need to perform the same set of actions—check to see if a form field is empty—30
times. Since computers are good at performing repetitive tasks, it makes sense that
JavaScript includes the tools to quickly do the same thing repeatedly.

In programming-speak, performing the same task over and over is called a loop, and
because loops are so common in programming, JavaScript offers several different
types. All do the same thing, just in slightly different ways.

While	Loops
A while loop repeats a chunk of code as long as a particular condition is true; in other
words, while the condition is true. The basic structure of a while loop is this:

while (condition) {
 // javascript to repeat
}

The first line introduces the while statement. As with a conditional statement, you
place a condition between the set of parentheses that follow the keyword while. The
condition is any test you’d use in a conditional statement, such as x > 10 or answer
== ‘yes’. And just like a conditional statement, the JavaScript interpreter runs all of
the code that appears between the opening and closing braces if the condition is true.

However, unlike a conditional statement, when the JavaScript interpreter reaches
the closing brace of a while statement, instead of continuing to the next line of the
program, it jumps back to the top of the while statement and tests the condition a
second time. If the condition is again true, the interpreter runs the JavaScript be-
tween the braces a second time. This process continues until the condition is no
longer true; then the program continues to the next statement following the loop
(see Figure 3-5).

Figure 3-5:
A while loop runs the JavaScript code
between curly braces as long as the test
condition (x < 10 in this case) is true.

while (x < 10) {
document.write(x + "
");

 x = x + 1;
 // return to top and test again
}
// continue program

if condition is true if condition is false

94 javascript & jquery: the missing manual

Handling Repetitive
Tasks with Loops

Say you want to print the numbers 1 to 5 on a page. One possible way to do that is
like this:

document.write('Number 1
');
document.write('Number 2
');
document.write('Number 3
');
document.write('Number 4
');
document.write('Number 5
');

Notice that each line of code is nearly identical—only the number changes from line
to line. In this situation, a loop provides a more efficient way to achieve the same goal:

var num = 1;
while (num <= 5) {
 document.write('Number ' + num + '
');
 num += 1;
}

The first line of code—var num = 1;—isn’t part of the while loop: Instead, it sets up
a variable to hold the number to be printed to the page. The second line is the start
of the loop. It sets up the test condition. As long as the number stored in the variable
num is less than or equal to 5, the code between the braces runs. When the test con-
dition is encountered for the first time, the value of num is 1, so the test is true (1 is
less than 5), and the document.write() command executes, writing “Number 1
“
to the page (the
 is just an HTML line break to make sure each line prints onto
a separate line on the web page).

Tip: A more compact way to write num + = 1 (which just adds one to the current number stored in the
variable num) is like this:

num++

This shorthand method also adds one to the variable num (see Table 2-3 on page 54 for more information.)

The last line of the loop—num += 1—is very important. Not only does it increase the
value of num by 1 so the next number (2, for example) will print, but it also makes
it possible for the test condition to eventually turn out to be false (if the += thingy
looks weird, turn back to page 54 for an explanation of how it works). Because the
JavaScript code within a while statement repeats as long as the condition is true, you
must change one of the elements of the condition so that the condition eventually
becomes false in order to stop the loop and move onto the next part of the script. If
the test condition never turns out to be false, you end up with what’s called an infinite
loop—a program that never ends. Notice what would happen if you left that line out
of the loop:

var num = 1;
while (num <= 5) { // this is an endless loop
 document.write('Number ' + num + '
');
}

95chapter 3: adding logic and control to your programs

Handling Repetitive
Tasks with Loops

The first time through this loop, the test would ask: Is 1 less than or equal to 5? The
answer is yes, so document.write() runs. At the end of the loop (the last brace), the
JavaScript interpreter goes back to the beginning of the loop and tests the condition
again. At this point, num is still 1, so the condition is true again and the document
.write() executes. Again, the JavaScript interpreter returns to the beginning of the
loop and tests the condition a third time. You can see where this goes: an endless
number of lines that say “Number 1.”

This simple example also shows some of the flexibility offered by loops. Say, for
example, you wanted to write the numbers 1–100, instead of just 1–5. Instead of
adding lots of additional lines of document.write() commands, you just alter the test
condition like this:

var num = 1;
while (num <= 100) {
 document.write('Number ' + num + '
');
 num = num + 1;
}

Now the loop will execute 100 times, writing 100 lines to the web page.

Loops	and	Arrays
You’ll find loops come in handy when dealing with a common JavaScript element—
an array. As you recall from page 59, an array is a collection of data. You can think
of an array as a kind of shopping list. When you go shopping, you actually perform
a kind of loop: You walk around the store looking for an item on your list and, when
you find it, you put it into your cart; then you look for the next item on your list,
put it into the cart, and so on, until you’ve gone through the entire list. Then you’re
done (this is the same as exiting the loop) and you can go to the checkout counter (in
other words, move to the next step of your “program”).

You can use loops in JavaScript to go through items in an array and perform a task
on each item. For example, say you’re building a program that generates a calendar.
The calendar is completely generated using JavaScript, and you want to print the
name of each day of the week on the calendar. You might start by storing the names
of the weeks into an array like this:

var days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', ↵
 'Friday', 'Saturday', 'Sunday'];

Note: The ↵ symbol that appears in the code above indicates that this line of JavaScript code belongs on
a single line. Since the width of this book’s pages sometimes prevents a single line of code from fitting on
a single printed line, this book uses the ↵ symbol to indicate code that should appear together on a single
line. If you were going to type this code into a text editor, you’d type it as one long line (and leave out
the ↵).

You can then loop through each item in the array and print it to the page. Remember
that you access one item in an array using the item’s index value. For example, the

96 javascript & jquery: the missing manual

Handling Repetitive
Tasks with Loops

first item in the days array above (Monday) is retrieved with days[0]. The second
item is days[1], and so on.

Here’s how you can use a while loop to print each item in this array:
var counter = 0;
while (counter < days.length) {
 document.write(days[counter] + ', ');
 counter++;
}

The first line—var counter = 0—sets up (or initializes in programmer-speak) a coun-
ter variable that’s used both as part of the test condition, and as the index for ac-
cessing array items. The condition—counter < days.length—just asks if the current
value stored in the counter variable is less than the number of items in the array
(remember, as described on page 63, the number of items in an array is stored in the
array’s length property). In this case, the condition checks if the counter is less than
7 (the number of days in the week). If counter is less than 7, then the loop begins:
The day of the week is written to the page (followed by a comma and a period), and
the counter is incremented by 1 (counter++ is the same as counter += 1, or counter =
counter + 1 [see the Tip on page 94]). After the loop runs, it tries the test again; the
loop continues to run until the test turns out to be false. This process is diagrammed
in Figure 3-6.

Figure 3-6:
For this loop, the condition
is tested 8 times. The last
test asks if 7 is less than 7. It
isn’t, so the while state-
ment is completed, and the
JavaScript interpreter skips
the loop and continues with
the next part of the script.
The final result of this script
will be “Monday, Tuesday,
Wednesday, Thursday,
Friday, Saturday, Sunday”.

var counter = 0;
while (counter < days.length) {
 document.write(days[counter] + ', ');
 counter++;
}

0

1

2

3

4

5

6

7

0 < 7

1 < 7

2 < 7

3 < 7

4 < 7

5 < 7

6 < 7

7 < 7

yes

yes

yes

yes

yes

yes

yes

no

days[0]

days[1]

days[2]

days[3]

days[4]

days[5]

days[6]

counter value
before test

1

2

3

4

5

6

7

counter value
after counter++condition loop? days[counter]

97chapter 3: adding logic and control to your programs

Handling Repetitive
Tasks with Loops

For	Loops
JavaScript offers another type of loop, called a for loop, that’s a little more compact
(and a little more confusing). For loops are usually used for repeating a series of
steps a certain number of times, so they often involve some kind of counter vari-
able, a conditional test, and a way of changing the counter variable. In many cases,
a for loop can achieve the same thing as a while loop, with fewer lines of code. For
example, here’s the while loop shown on page 96:

var num = 1;
while (num <= 100) {
 document.write('Number ' + num + '
');
 num += 1;
}

You can achieve the same effect using a for loop with only three lines of code:
for (var num=1; num<=100; num++) {
 document.write('Number ' + num + '
');
}

At first, for loops might look a little confusing, but once you figure out the different
parts of the for statement, they aren’t hard. Each for loop begins with the keyword
for, followed by a set of parentheses containing three parts, and a pair of curly braces.
As with while loops, the stuff inside curly braces (document.write(‘Number ‘ + num
+ ‘
’); in this example) is the JavaScript code that executes as part of the loop.

Table 3-2 explains the three parts inside the parentheses, but in a nutshell, the first
part (var num=1;) initializes a counter variable. This step only happens once at the
very beginning of the statement. The second part is the condition, which is tested
to see if the loop is run; the third part is an action that happens at the end of each
loop—it usually changes the value of the counter, so that the test condition eventu-
ally turns out to be false and the loop ends.

Table 3-2. Understanding the parts of a for loop

Parts of loop What it means When it’s applied
 for Introduces the for loop.

 var num = 1; Set variable num to 1. Only once; at the very begin-
ning of the statement.

 num <= 100; Is num less than or equal to 100?
If yes, then loop again. If not, then
skip loop and continue script.

At beginning of the statement
and before each time through
the loop.

 num++ Add 1 to variable num. Same as
num=num + 1 and num+=1.

At end of each time through
loop.

Since for loops provide an easy way to repeat a series of steps a set number of times,
they work really well for working through the elements of an array. The while loop
in Figure 3-5, which writes each item in an array to the page, can be rewritten using
a for loop, like this:

98 javascript & jquery: the missing manual

Handling Repetitive
Tasks with Loops

var days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', ↵
 'Friday', 'Saturday', 'Sunday'];
for (var i=0; i<days.length; i++) {
 document.write(days[i] + ', ');
}

Tip: Seasoned programmers often use a very short name for counter variables in for loops. In the code
above, the letter i acts as the name of the counter. A one-letter name (i, j, and z are common) is fast to
type; and since the variable isn’t used for anything except running the loop, there’s no need to provide a
more descriptive name like counter.

The examples so far have counted up to a certain number and then stopped the loop,
but you can also count backwards. For example, say you want to print the items in
an array in reverse order (in other words, the last item in the array prints first). You
can do this:

var example = ['first','second','third','last'];
for (var j = example.length ; j > 0; j--) {
 document.write(example[j-1] + '
');
}

In this example, the counter variable j starts with the total number of items in the
array (4). Each time through the loop, you test to see if the value in j is greater than 0;
if it is, the code between the curly braces is run. Then, 1 is subtracted from j (j--), and
the test is run again. The only tricky part is the way the program accesses the array
item (example[j-1]). Since arrays start with an index of 0, the last item in an array is
one less than the total number of items in the array (as explained on page 62). Here,
j starts with the total number of items in the array, so in order to access the last item,
you must subtract 1 from j to get the proper item.

Do/While	Loops
There’s another, less common type of loop, known as a do/while loop. This type of
loop works nearly identically to a while loop. Its basic structure looks like this:

do {
 // javascript to repeat
} while (condition) ;

In this type of loop, the conditional test happens at the end, after the loop has run. As
a result, the JavaScript code within the curly braces always run at least once. Even if
the condition isn’t ever true, the test isn’t run until after the code runs once.

There aren’t too many cases where this comes in handy, but it’s very useful when you
want to prompt the user for input. The tutorial you did earlier in this chapter (page
89) is a good example. That script asks visitors to type in a number. It includes a bit
of a fail-safe system, so that if they don’t type a number, the script asks them one
more time to type a number. Unfortunately, if someone’s really stubborn and types
something other than a number the second time, a nonsensical message is printed
to the page.

99chapter 3: adding logic and control to your programs

Handling Repetitive
Tasks with Loops

However, with a do/while loop, you can continually prompt the visitor for a number
until she types one in. To see how this works, you’ll edit the page you completed on
page 92:

1. In a text editor, open the conditional.html page you completed on page 92.
(If you didn’t complete that tutorial, you can just open the file complete_condi-
tional.html.) You’ll replace the code near the top of the page with a do/while loop.

2. Locate the code between the <script> tags in the <head> of the page, and
delete the code in bold below:
var luckyNumber = prompt('What is your lucky number?','');
luckyNumber = parseInt(luckyNumber, 10);
if (isNaN(luckyNumber)) {
 luckyNumber = prompt('Please, tell me your lucky number.','');
}

The code you deleted provided the second prompt dialog box. You won’t need
that anymore. Instead, you’ll wrap the code that’s left inside a do/while loop.

3. Place the cursor before the first line of code (the line that begins with var
luckyNumber) and type:
do {

This code creates the beginning of the loop. Next, you’ll finish the loop and add
the test condition.

4. Click at the end of the last line of JavaScript code in that section and type: }
while (isNaN(luckyNumber));. The completed code block should look like this:
do {
 var luckyNumber = prompt('What is your lucky number?','');
 luckyNumber = parseInt(luckyNumber, 10);
} while (isNaN(luckyNumber));

Save this file and preview it in a web browser. Try typing text and other non-
numeric symbols in the prompt dialog box. That annoying dialog box continues
to appear until you actually type a number.
Here’s how it works: The do keyword tells the JavaScript interpreter that it’s
about to enter a do/while loop. The next two lines are then run, so the prompt
appears and the visitor’s answer is converted to a whole number. It’s only at this
point that the condition is tested. It’s the same condition as the script on page
92: It just checks to see if the input retrieved from the visitor is “not a number.” If
the input isn’t a number, the loop repeats. In other words, the prompt will keep
reappearing as long as a non-number is entered. The good thing about this ap-
proach is that it guarantees that the prompt appears at least once, so if the visitor
does type a number in response to the question, there is no loop.
You can find the completed, functioning tutorial in the file complete_do-while
.html in the Chapter03 folder.

100 javascript & jquery: the missing manual

Functions: Turn
Useful Code Into
Reusable Commands

Functions: Turn Useful Code Into Reusable Commands
Imagine that at work you’ve just gotten a new assistant to help you with your every
task (time to file this book under “fantasy fiction”). Suppose you got hungry for a
piece of pizza, but since the assistant was new to the building and the area, you had
to give him detailed directions: “Go out this door, turn right, go to the elevator, take
the elevator to the first floor, walk out of the building…” and so on. The assistant
follows your directions and brings you a slice. A couple hours later, you’re hungry
again, and you want more pizza. Now, you don’t have to go through the whole set of
directions again—“Go out this door, turn right, go to the elevator…” By this time,
your assistant knows where the pizza joint is, so you just say, “Get me a slice of pizza,”
and he goes to the pizza place and returns with a slice.

In other words, you only need to provide detailed directions a single time; your
assistant memorizes those steps and with the simple phrase “Get me a slice,” he in-
stantly leaves and reappears a little while later with a piece of pizza. JavaScript has
an equivalent mechanism called a function. A function is a series of programming
steps that you set up at the beginning of your script—the equivalent of providing
detailed directions to your assistant. Those steps aren’t actually run when you create
the function; instead, they’re stored in the web browser’s memory, where you can call
upon them whenever you need those steps performed.

Functions are invaluable for efficiently performing multiple programming steps re-
peatedly. For example, say you create a photo gallery web page filled with 50 small
thumbnail images. When someone clicks one of the small photos, you might want
the page to dim, a caption to appear, and a larger version of that image to fill the
screen (you’ll learn to do just that on page 222). Each time someone clicks an image,
the process repeats; so on a web page with 50 small photos, your script might have
to do the same series of steps 50 times. Fortunately, you don’t have to write the same
code 50 times to make this photo gallery work. Instead, you can write a function
with all the necessary steps, and then, with each click of the thumbnail, you run the
function. You write the code once, but you run it any time you like.

The basic structure of a function looks like this:
function functionName() {
 // the JavaScript you want to run
}

The keyword function lets the JavaScript interpreter know you’re creating a function—
it’s similar to how you use if to begin an if/else statement or var to create a variable.
Next, you provide a function name; as with a variable, you get to choose your own
function name. Follow the same rules listed on page 46 for naming variables. In ad-
dition, it’s common to include a verb in a function name like calculateTax, getScreen-
Height, updatePage, or fadeImage. An active name makes it clear that it does some-
thing and makes it easier to distinguish between function and variable names.

Directly following the name, you add a pair of parentheses, which are another char-
acteristic of functions. After the parentheses, there’s a space followed by a curly

101chapter 3: adding logic and control to your programs

Functions: Turn
Useful Code Into

Reusable Commands
brace, one or more lines of JavaScript and a final, closing curly brace. As with if
statements, the curly braces mark the beginning and end of the JavaScript code that
makes up the function.

Note: As with if/else statements, functions are more easily read if you indent the JavaScript code between
the curly braces. Two spaces (or a tab) at the beginning of each line are common.

Here’s a very simple function to print out the current date in a format like “Sun May
12 2008”:

function printToday() {
 var today = new Date();
 document.write(today.toDateString());
}

The function’s name is printToday. It has just two lines of JavaScript code that re-
trieve the current date, convert the date to a format we can understand (that’s the
toDateString() part), and then print the results to the page using our old friend the
document.write() command. Don’t worry about how all of the date stuff works—
you’ll find out about dates later in this book, on page 450.

Programmers usually put their functions at the beginning of a script, which sets
up the various functions that the rest of the script will use later. Remember that a
function doesn’t run when it’s first created—it’s like telling your assistant how to get
to the pizza place without actually sending him there. The JavaScript code is merely
stored in the browser’s memory, waiting to be run later, when you need it.

But how do you run a function? In programming-speak you call the function when-
ever you want the function to perform its task. Calling the function is just a matter of
writing the function’s name, followed by a pair of parentheses. For example, to make
our printToday function run, you’d simply type:

printToday();

As you can see, making a function run doesn’t take a lot of typing—that’s the beauty
of functions. Once they’re created, you don’t have to add much code to get results.

Note: When calling a function, don’t forget the parentheses following the function. That’s the part that
makes the function run. For example, printToday won’t do anything, but printToday() executes the function.

Mini-Tutorial
Because functions are such an important concept, here’s a series of steps for you to
practice creating and using a function on a real web page:

1. In a text editor, open the file print_date.html.
You’ll start by adding a function in the head of the document.

102 javascript & jquery: the missing manual

Functions: Turn
Useful Code Into
Reusable Commands

2. Locate the code between the <script> tags in the <head> of the page, and type
the following code:
function printToday() {
 var today = new Date();
 document.write(today.toDateString());
}

The basic function is in place, but it doesn’t do anything yet.
3. Save the file and preview it in a web browser.

Nothing happens. Well, actually something does happen; you just don’t see it.
The web browser read the function statements into memory, and was waiting
for you to actually call the function, which you’ll do next.

4. Return to your text editor and the print_date.html file. Locate the <p> tag that
begins with “Today is”, and between the two tags, add the following
bolded code:
<p>Today is
<script>printToday();</script>
</p>

Save the page and preview it in a web browser. The current date is printed to the
page. If you wanted to print the date at the bottom of the web page as well, all
you’d need to do is call the function a second time.

Giving	Information	to	Your	Functions
Functions are even more useful when they receive information. Think back to your
assistant—the fellow who fetches you slices of pizza. The original “function” described
on page 100 was simply directions to the pizza parlor and instructions to buy a slice
and return to the office. When you wanted some pizza, you “called” the function by
telling your assistant “Get me a slice!” Of course, depending on how you’re feeling,
you might want a slice of pepperoni, cheese, or olive pizza. To make your instruc-
tions more flexible, you can tell your assistant what type of slice you’d like. Each time
you request some pizza, you can specify a different type.

JavaScript functions can also accept information, called parameters, which the func-
tion uses to carry out its actions. For example, if you want to create a function that
calculates the total cost of a person’s shopping cart, then the function needs to know
how much each item costs, and how many of each item was ordered.

To start, when you create the function, place the name of a new variable inside the
parentheses—this is the parameter. The basic structure looks like this:

function functionName(parameter) {
 // the JavaScript you want to run
}

The parameter is just a variable, so you supply any valid variable name (see page 46
for tips on naming variables). For example, let’s say you want to save a few keystrokes
each time you print something to a web page. You create a simple function that lets
you replace the web browser’s document.write() function with a shorter name:

103chapter 3: adding logic and control to your programs

Functions: Turn
Useful Code Into

Reusable Commands
function print(message) {
 document.write(message);
}

The name of this function is print and it has one parameter, named message. When
this function is called, it receives some information (the message to be printed) and
then it uses the document.write() function to write the message to the page. Of course,
a function doesn’t do anything until it’s called, so somewhere else on your web page,
you can call the function like this:

print('Hello world.');

When this code is run, the print function is called and some text—the string ‘Hello
world.’—is sent to the function, which then prints “Hello World.” to the page. Tech-
nically, the process of sending information to a function is called “passing an argu-
ment.” In this example, the text—‘Hello world.’—is the argument.

Even with a really simple function like this, the logic of when and how things work
can be a little confusing if you’re new to programming. Here’s how each step breaks
down, as shown in the diagram in Figure 3-7:

1. The function is read by the JavaScript interpreter and stored in memory. This
step just prepares the web browser to run the function later.

2. The function is called and information—“Hello world.”—is passed to the
function.

3. The information passed to the function is stored in a new variable named
message. This step is equivalent to var message = ‘Hello World.’;.

4. Finally, the function runs, printing the value stored in the variable message to
the web page.

Figure 3-7:
When working with functions, you usually create the func-
tion before you use it. The print() function here is created
in the first three lines of code, but the code inside the
function doesn’t actually run until the last line.

function print(message) {
 document.write(message);
}

print(’Hello world!’);

1

2

3

4

A function isn’t limited to a single parameter, either. You can pass any number of
arguments to a function. You just need to specify each parameter in the function,
like this:

function functionName(parameter1, parameter2, parameter3) {
 // the JavaScript you want to run
}

And then call the function with the same number of arguments in the same order:
functionName(argument1, argument2, argument3);

104 javascript & jquery: the missing manual

Functions: Turn
Useful Code Into
Reusable Commands

In this example, when functionName is called, argument1 is stored in parameter1,
argument2 in parameter2, and so on. Expanding on the print function from above,
suppose in addition to printing a message to the web page, you want to specify an
HTML tag to wrap around the message. This way, you can print the message as a
headline or a paragraph. Here’s what the new function would look like:

function print(message,tag) {
 document.write('<' + tag + '>' + message +'</' + tag + '>');
}

The function call would look like this:
print('Hello world.', 'p');

In this example, you’re passing two arguments—‘Hello world.’ and ‘p’—to the function.
Those values are stored in the function’s two variables—message and tag. The result
is a new paragraph—<p>Hello world.</p>—printed to the page.

You’re not limited to passing just strings to a function either: You can send any type
of JavaScript variable or value to a function. For example, you can send an array, a
variable, a number, or a Boolean value as an argument.

Retrieving	Information	from	Functions
Sometimes a function simply does something like write a message to a page, move
an object across the screen, or validate the form fields on a page. Other times, you’ll
want to get something back from a function: after all, the “Get me a slice of pizza”
function wouldn’t be much good if you didn’t end up with some tasty pizza at the
end. Likewise, a function that calculates the total cost of items in a shopping cart isn’t
very useful unless the function lets you know the final total.

Some of the built-in JavaScript functions we’ve already seen return values. For ex-
ample, the prompt() command (see page 57) pops up a dialog box with a text field,
and whatever the user types into the box is returned. As you’ve seen, you can then
store that return value into a variable and do something with it:

var answer = prompt('What month were you born?', '');

The visitor’s response to the prompt dialog box is stored in the variable answer; you
can then test the value inside that variable using conditional comments or do any of
the many other things JavaScript lets you do with variables.

To return a value from your own functions, you use return followed by the value you
wish to return:

function functionName(parameter1, parameter2) {
 // the JavaScript you want to run
 return value;
}

For example, say you want to calculate the total cost of a sale including sales tax. You
might create a script like this:

var TAX = .08; // 8% sales tax
function calculateTotal(quantity, price) {
 var total = quantity * price * (1 + TAX);

105chapter 3: adding logic and control to your programs

Functions: Turn
Useful Code Into

Reusable Commands
 var formattedTotal = total.toFixed(2);
 return formattedTotal;
}

The first line stores the tax rate into a variable named TAX (which lets you easily
change the rate simply by updating this line of code). The next three lines define the
function. Don’t worry too much about what’s happening inside the function—you’ll
learn more about working with numbers on page 445. The important part is the
fourth line of the function—the return statement. It returns the value stored in the
variable formattedTotal.

To make use of the return value, you usually store it inside a variable. So in this
example, you could call the function like this:

var saleTotal = calculateTotal(2, 16.95);
document.write('Total cost is: $' + saleTotal);

In this case, the values 2 and 16.95 are passed to the function. The first number
represents the number of items purchased, and the second their individual cost. The
function determines the total cost plus tax and returns the total: That result is then
stored into a new variable—saleTotal—which is then used as part of a document
.write() command to print the total cost of the sale including tax.

Note: The return keyword should be the last statement in a function, since as soon as a browser’s
JavaScript interpreter encounters the return statement, it exits the function. Any lines of code following the
return statement in the function are never executed.

You don’t have to store the return value into a variable, however. You can use the
return value directly within another statement like this:

document.write('Total: $' + calculateTotal(2, 16.95));

In this case, the function is called and its return value is added to the string ‘Total:
$’, which is then printed to the document. At first, this way of using a function may
be hard to read, so you might want to take the extra step of just storing the function’s
results into a variable and then using that variable in your script.

Note: A function can only return one value. If you want to return multiple items, store the results in an
array, and return the array.

Keeping	Variables	from	Colliding
One great advantage of functions is that they can cut down the amount of program-
ming you have to do. You’ll probably find yourself using a really useful function time
and time again on different projects. For example, a function that helps calculate
shipping and sales tax could come in handy on every order form you create, so you
might copy and paste that function into other scripts on your site or on other projects.

106 javascript & jquery: the missing manual

Functions: Turn
Useful Code Into
Reusable Commands

One potential problem arises when you just plop a function down into an already-
created script. What happens if the script uses the same variable names as the func-
tion? Will the function overwrite the variable from the script, or vice versa? For
example:

var message = 'Outside the function';
function warning(message) {
 alert(message);
}
warning('Inside the function'); // 'Inside the function'
alert(message); // 'Outside the function'

Notice that the variable message appears both outside the function (the first line of
the script) and as a parameter in the function. A parameter is really just a variable
that’s filled with data when the function’s called. In this case, the function call—
warning(‘Inside the function’);—passes a string to the function and the function
stores that string in the variable message. It looks like there are now two versions of
the variable message. So what happens to the value in the original message variable
that’s created in the first line of the script?

You might think that the original value stored in message is overwritten with a new
value, the string ‘Outside the function’; it’s not. When you run this script, you’ll see
two alert dialog boxes: The first will say “Inside the function” and the second “Out-
side the function.” There are actually two variables named message, but they exist in
separate places (see Figure 3-8).

Figure 3-8:
A function parameter is only visible inside the
function, so the first line of this function—function
warning(message)—creates a new variable
named message that can only be accessed
inside the function. Once the function is done,
that variable disappears.

var message = 'Outside the function';

function warning(message) {
 alert(message);
}
warning('Inside the function');
alert(message);

The JavaScript interpreter treats variables inside of a function differently than vari-
ables declared and created outside of a function. In programming-speak, each func-
tion has its own scope. A function’s scope is like a wall that surrounds the function—
variables inside the wall aren’t visible to the rest of the script outside the wall. Scope
is a pretty confusing concept when you first learn about it, but it’s very useful. Be-
cause a function has its own scope, you don’t have to be afraid that the names you
use for parameters in your function will overwrite or conflict with variables used in
another part of the script.

So far, the only situation we’ve discussed is the use of variables as parameters. But what
about a variable that’s created inside the function, but not as a parameter, like this:

107chapter 3: adding logic and control to your programs

Functions: Turn
Useful Code Into

Reusable Commands
var message = 'Outside the function';
function warning() {
 var message ='Inside the function';
 alert(message);
}
warning(); // 'Inside the function'
alert(message); //'Outside the function'

Here, the code creates a message variable twice—in the first line of the script,
and again in the first line inside the function. This situation is the same as with
parameters—by typing var message inside the function, you’ve created a new vari-
able inside the function’s scope. This type of variable is called a local variable, since
it’s only visible within the walls of the function—the main script and other functions
can’t see or access this variable.

However, variables created in the main part of a script (outside a function) exist in
global scope. All functions in a script can access variables that are created in its main
body. For example, in the code below, the variable message is created on the first line
of the script—it’s a global variable, and it can be accessed by the function.

var message = 'Global variable';
function warning() {
 alert(message);
}
warning(); // 'Global variable'

This function doesn’t have any parameters and doesn’t define a message variable, so
when the alert(message) part is run, the function looks for a global variable named
message. In this case, that variable exists, so an alert dialog with the text “Global
variable” appears.

There’s one potential gotcha with local and global variables—a variable only exists
within the function’s scope if it’s a parameter, or if the variable is created inside the
function with the var keyword. Figure 3-9 demonstrates this situation. The top
chunk of code demonstrates how both a global variable named message and a func-
tion’s local variable named message can exist side-by-side. The key is the first line
inside the function—var message =‘Inside the function’;. By using var, you create a
local variable.

Compare that to the code in the bottom half of Figure 3-9. In this case, the function
doesn’t use the var keyword. Instead, the line of code message=‘Inside the function’;
doesn’t create a new local variable; it simply stores a new value inside the global
variable message. The result? The function clobbers the global variable, replacing its
initial value.

108 javascript & jquery: the missing manual

Tutorial: A Simple
Quiz

Figure 3-9:
There’s a subtle yet crucial dif-
ference when assigning values
to variables within a function. If
you want the variable to only be
accessible to the code inside the
function, make sure to use the
var keyword to create the vari-
able inside the function (top).
If you don’t use var, you’re just
storing a new value inside the
global variable (bottom).

var message = 'Outside the function';

function warning() {
 var message ='Inside the function';

 alert(message); //'Inside the function'
}
warning();
alert(message); //'Outside the function'

var message = 'Outside the function';

function warning() {
 message ='Inside the function';

 alert(message); //'Inside the function'
}
warning();
alert(message); //'Inside the function'

Global variable in function

Local variable in function

The notion of variable scope is pretty confusing, so the preceding discussion may
not make a lot of sense for you right now. But just keep one thing in mind: If the
variables you create in your scripts don’t seem to be holding the values you expect,
you might be running into a scope problem. If that happens, come back and reread
this section.

Tutorial: A Simple Quiz
Now it’s time to bring together the lessons from this chapter and create a complete
program. In this tutorial, you’ll create a simple quiz system for asking questions and
evaluating the quiz-taker’s performance. First, this section will look at a couple of
ways you could solve this problem, and discuss efficient techniques for programming.

As always, the first step is to figure out what exactly the program should do. There
are a few things you want the program to accomplish:

• Ask questions. If you’re going to quiz people, you need a way to ask them ques-
tions. At this point, you know one simple way to get feedback on a web page:

109chapter 3: adding logic and control to your programs

Tutorial: A Simple
Quiz

the prompt() command. In addition, you’ll need a list of questions; since arrays
are good for storing lists of information, you’ll use an array to store your quiz
questions.

• Let quiz-taker know if she’s right or wrong. First, you need to determine if
the quiz-taker gave the right answer: A conditional statement can take care of
that. Then, to let the quiz taker know if she’s right or wrong, you can use the
alert()command.

• Print the results of the quiz. You need a way to track how well the quiz-taker’s
doing—a variable that keeps track of the number of correct responses will work.
Then, to announce the final results of the quiz, you can either use the alert()
command or the document.write() method.

There are many ways to solve this problem. Some beginning programmers might
take a blunt-force approach and repeat the same code to ask each question. For ex-
ample, the JavaScript to ask the first two questions in the quiz might look like this:

var answer1=prompt('How many moons does Earth have?','');
if (answer1 == 1) {
 alert('Correct!');
} else {
 alert('Sorry. The correct answer is 1');
}
var answer2=prompt('How many moons does Saturn have?','');
if (answer2 == 31) {
 alert('Correct!');
} else {
 alert('Sorry. The correct answer is 31');
}

This kind of approach seems logical, since the goal of the program is to ask one
question after another. However, it’s not an efficient way to program. Whenever you
see the same steps written multiple times in a program, it’s time to consider using
a loop or a function instead. We’ll create a program that does both: uses a loop to
go through each question in the quiz, and a function that performs the question
asking tasks:

1. In a text editor, open the file quiz.html.
You’ll start by setting up a few variables that can track the number of correct
answers and the questions for the quiz.

2. Locate the code between the <script> tags in the <head> of the page, and type
the following code:
var score = 0;

This variable stores the number of answers the quiz-taker gets right. At the be-
ginning of the quiz, before any questions have been answered, you set the vari-
able to 0. Next, you’ll create a list of questions and their answers.

3. Hit Return to add a new line and type var questions = [.
You’ll be storing all of the questions inside an array, which is really just a vari-
able that can hold multiple items. The code you just typed is the first part of an

110 javascript & jquery: the missing manual

Tutorial: A Simple
Quiz

array statement. You’ll be typing the array over multiple lines as described on
page 61.

4. Press Return twice to add two new lines and type];. Your code should now
look like this:
var score = 0;
var questions = [

];

Since the quiz is made up of a bunch of questions, it makes sense to store each
question as one item in an array. Then, when you want to ask the quiz questions,
you simply go through each item in the list and ask the question. However,
every question also has an answer, so you need a way to keep track of the an-
swers as well.
One solution is to create another array—answers[], for example—that holds all
of the answers. To ask the first question, look for the first item in the questions
array, and to see if the answer is correct, look in the first item of the answers
array. However, this has the potential drawback that the two lists might get out
of sync: For example, you add a question in the middle of the questions array,
but mistakenly put the answer at the beginning of the answers array. At that
point, the first item in the questions array no longer matches the first item in
the answers array.
A better alternative is to use a nested array or (if you really want to sound scary
and out-of-this-world) a multidimensional array. All this really means is that
you create an array that includes the question and the answer, and you store that
array as one item in the questions array. In other words, you create a list where
each item in the list is another list.

5. Click in the empty line between the [and]; and add the code in bold below:
var questions = [
 ['How many moons does Earth have?', 1],
];

The code [‘How many moons does Earth have?’, 1] is an array of two items. The
first item is a question, and the second item is the answer. This array is the first
item in the array questions. You don’t give this new array a name, since it’s nested
inside another array. The comma at the end of the line marks the end of the first
item in the questions array and indicates that another array item will follow.

6. Hit Return to create a new, empty line and add the following two bolded lines
to the script:
var questions = [
 ['How many moons does Earth have?', 1],
 ['How many moons does Saturn have?',31],
 ['How many moons does Venus have?', 0]
];

These are two more questions for the quiz. Note that after the last item in an
array, you don’t type a comma. Setting up all of your questions in a single array
provides for a lot of flexibility. If you want to add another question to the list,
just add another nested array containing a new question and answer.

111chapter 3: adding logic and control to your programs

Tutorial: A Simple
Quiz

Now that the basic variables for the quiz are set up, it’s time to figure out how
to ask each question. The questions are stored in an array, and you want to ask
each question in the list. As you’ll recall from page 95, a loop is a perfect way to
go through each item in an array.

7. Click after the]; (the end of the answers array) and hit Return to create a new,
empty line. Then add the following code:
for (var i=0; i<questions.length; i++) {

This line is the first part of a for loop (page 97). It does three things: First, it cre-
ates a new variable named i and stores the number 0 in it. This variable is the
counter that keeps track of the number of times through the loop. The second
part—i<questions.length—is a condition, as in an if/else statement. It tests to see
if the value in i is less than the number of items in the questions array—if that’s
true, the loop runs again. As soon as i is equal to or greater than the total num-
ber of items in the array, the loop is over. Finally, i++ changes the value of i each
time through the loop—it adds 1 to the value of i.
Now it’s time for the core of the loop—the actual JavaScript that’s performed
each time through the loop.

8. Hit Return to create a new, empty line and add the following line of code:
askQuestion(questions[i]);

Instead of putting all of the programming code for asking the question in the
loop, you’ll merely run a function that asks the questions. The function (which
you’ll create in a moment) is named askQuestion(). Each time through the
loop, you’ll send one item from the questions array to the function—that’s the
questions[i] part. Remember that you access an item in an array using an index
value, so questions[0] is the first item in the array, questions[1] is the second
item, and so on.
By creating a function that asks the questions, you make a more flexible pro-
gram. You can move and reuse the function to another program if you want.
Finally, you’ll finish the loop code.

9. Hit Return to create a new, empty line and type } to indicate the end of the
loop. The finished loop code should look like this:
for (var i=0; i<questions.length; i++) {
 askQuestion(questions[i]);
}

Yes, that’s all there is to it—just a simple loop that calls a function with every
question in the quiz. Now, you’ll create the heart of the quiz, the askQuestion()
function.

10. Create an empty line before the for loop you just added.
In other words, you’ll add the function between the two statements that define
the basic variables at the beginning of the script and the loop you just added. It’s
OK to define functions anywhere in your script, but most programmers place
functions near the beginning of the program. In many scripts, global variables—
like score and questions in this script—are defined first, so that you can see and

112 javascript & jquery: the missing manual

Tutorial: A Simple
Quiz

change those easily; functions appear next, since they usually form the core of
most scripts; and finally, the step-by-step actions (like the loop) appear last.

11. Add the following code:
function askQuestion(question) {

}

This code indicates the body of the function—it’s always a good idea to type
both the beginning and ending curly braces of a function and then add the
script within them. That way, you won’t accidentally forget to add the closing
curly brace.
This function receives a single argument and stores it in a variable named ques-
tion. Note that this isn’t the same as the questions[] array you created in step 6. In
this case, the question variable will actually be filled by one item from the ques-
tions[] array. As you saw in step 8, one item from that array is actually another
array containing two items, the question and the answer.

12. Add the line in bold below:
function askQuestion(question) {
 var answer = prompt(question[0],'');
}

This should look familiar—your old friend the prompt() command. The only
part that might feel new is question[0]. That’s how you access the first element
in the array question. In this example, the function receives one array, which
includes a question and answer. For example, the first array will be [‘How many
moons does Earth have?’, 1]. So question[0] accesses the first item—‘How many
moons does Earth have’—which is passed to the prompt() command as the
question that will appear in the prompt dialog box.
Your program stores whatever the quiz-taker types into the prompt dialog box
in the variable answer. Next, you’ll compare the quiz-taker’s response with the
question’s actual answer.

13. Complete the function by adding the code in bold below:
function askQuestion(question) {
 var answer = prompt(question[0],'');
 if (answer == question[1]) {
 alert('Correct!');
 score++;
 } else {
 alert('Sorry. The correct answer is ' + question[1]);
 }
}

113chapter 3: adding logic and control to your programs

Tutorial: A Simple
Quiz

This code is just a basic if/else statement. The condition—answer == question[1]—
checks to see if what the user entered (answer) is the same as the answer, which
is stored as the second item in the array (question[1]). If they match, then the
quiz-taker was right: An alert appears to let her know she got it right, and her
score is increased by one (score++). Of course, if she doesn’t answer correctly,
an alert appears displaying the correct answer.
At this point, the quiz is fully functional. If you save the file and load it into a
web browser, you’ll be able to take the quiz. However, you haven’t yet provided
the results to the quiz-taker so she can see how many she got correct. You’ll add
a script in the <body> of the web page to print out the results.

14. Locate the second pair of <script> tags near the bottom of the web page
and type:
var message = 'You got ' + score;

Here, you create a new variable and store the string ‘You got ’ plus the quiz-
taker’s score. So if she got all three right, the variable message would be ‘You
got 3’. To make the script easier to read, you’ll build up a longer message over
several lines.

15. Press Return and type:
message += ' out of ' + questions.length;

This adds ‘ out of ’ and the total number of questions to the message string, so at
this point, the message will be something like “You got 3 out of 3”. Now to finish
up the message and print it to the screen.

16. Add the bolded lines of code to your script:
var message = 'You got ' + score;
message += ' out of ' + questions.length;
message += ' questions correct.';
document.write('<p>' + message + '</p>');

Save the page, and open it in a web browser. Take the quiz and see how well you
do (see Figure 3-10). If the script doesn’t work, remember to try some of the
troubleshooting techniques mentioned on page 34. You can also compare your
script with a completed, functional version in the file complete_quiz.html.
Try adding additional questions to the questions[] array at the beginning of the
script to make the quiz even longer.

114 javascript & jquery: the missing manual

Tutorial: A Simple
Quiz

Figure 3-10:
The results of your
simple quiz program.
After you learn more
about how to ma-
nipulate a web page
on page 138, respond
to events on page
157, and work with
web forms on page
257, try to rewrite this
quiz program so the
questions appear di-
rectly within the web
page, and the score is
dynamically updated
after each answer. In
other words, you’ll
soon learn how to
ditch that clunky
prompt() command.

Now that you’ve grasped some of the not-so-exciting, brain-stretching details of Ja-
vaScript, it’s time to turn your attention to the real fun. In the next section, you’ll
learn about jQuery, what it is, how to use it, and, most importantly, how to have a lot
of fun and get a lot done with JavaScript programming.

2
Part Two: Getting Started
with jQuery
Chapter	4:	Introducing	jQuery

Chapter	5:	Action/Reaction:	Making	Pages	Come	Alive	with	Events

Chapter	6:	Animations	and	Effects

117

chapter
4

Introducing jQuery

The first chapters of this book covered many of the fundamentals of the
Java Script programming language—the keywords, concepts, and syntax of
JavaScript. Many of these concepts were fairly straightforward (“a variable is

like a box in which you put a value”), but some topics may have had you scratch-
ing your head or reaching for a bottle of aspirin (like the “for” loops discussed on
page 97). The truth is, for most people, JavaScript programming is difficult. In fact,
a 1,000-page book on JavaScript programming won’t cover everything there is to
know about JavaScript and how it works in the many different web browsers out in
the wild.

Programming is hard: That’s why this books covers both JavaScript and jQuery. As
you’ll see in the first section of this chapter, jQuery is a JavaScript library that lets
you jump-start your programming by handling many of the messy details of Java-
Script programming for you. jQuery—whose motto is “write less, do more”—makes
programming fun, fast, and rewarding. With jQuery, you can achieve in a single line
of code what could take 100 lines of pure JavaScript programming. After you go
through this and the following chapter, you’ll be able to achieve more with your web
pages than if you studied that 1,000-page book on JavaScript alone.

About JavaScript Libraries
Many JavaScript programs have to deal with the same set of web page tasks again and
again: selecting an element, adding new content, hiding and showing content, modi-
fying a tag’s attributes, determining the value of form fields, and making programs
react to different user interactions. The details of these basic actions can be quite
complicated—especially if you want the program to work in all major browsers.

118 javascript & jquery: the missing manual

About JavaScript
Libraries

Fortunately, JavaScript libraries offer a way to leap-frog past many time-consuming
programming details.

A JavaScript library is a collection of JavaScript code that provides simple solutions
to many of the mundane, day-to-day details of JavaScript. Think of it as a collec-
tion of prewritten JavaScript functions that you add to your web page. These func-
tions make it easy to complete common tasks. In many cases, you can replace many
lines of your own JavaScript programming (and the hours required to test them)
with a single function from a JavaScript library. There are lots of JavaScript libraries
out there, and many of them help create major websites like Yahoo, Amazon, CNN,
Apple, and Twitter.

This book uses the popular jQuery library (www.jquery.com). There are other Java-
Script libraries (see the box on the opposite page), but jQuery has many advantages:

• Relatively small file size. A compressed version of the library is only around
90 k. (If your web server uses “gzip” compression, you can bring the file size
down to just 30 k!)

• Friendly to web designers. jQuery doesn’t assume you’re a computer scientist. It
takes advantage of CSS knowledge that most web designers already have.

• It’s tried and true. jQuery is used on millions of sites, including many popular,
highly-trafficked websites like Digg, Dell, the Onion, and NBC. Even Google
uses it in some places, and it’s built into the number one blogging software,
WordPress. The fact that jQuery is so popular is a testament to how good it is.

• It’s free. Hey, you can’t beat that!
• Large developer community. As you read this, scores of people are working on

the jQuery project—writing code, fixing bugs, adding new features, and updat-
ing the website with documentation and tutorials. A JavaScript library created
by a single programmer (or one supplied by a single author) can easily disap-
pear if the programmer (or author) grows tired of the project. jQuery, on the
other hand, should be around for a long time, supported by the efforts of pro-
grammers around the world. Even big companies like Microsoft and Adobe are
pitching in and supplying engineers and programming code. It’s like having a
bunch of JavaScript programmers working for you for free.

• Plug-ins, plug-ins, plug-ins. jQuery lets other programmers create plug-ins—
add-on JavaScript programs that work in conjunction with jQuery to make cer-
tain tasks, effects, or features incredibly easy to add to a web page. In this book,
you’ll learn about plug-ins that make validating forms, adding drop-down
navigation menus, and building interactive slideshows a half-hour’s worth of
work, instead of a two-week project. There are literally thousands of other plug-
ins available for jQuery.

You’ve actually used jQuery in this book already. In the tutorial for Chapter 1 (page
33), you added just a few lines of JavaScript code to create a page fade-in effect.

119chapter 4: introducing jquery

Getting jQuery

UP TO SPEED

Other Libraries
jQuery isn’t the only JavaScript library in town. There are
many, many others. Some are designed to perform specific
tasks, and others are all-purpose libraries aimed at solving
every JavaScript task under the sun. Here are a few of the
most popular:

• Yahoo	 User	 Interface	 Library (http://developer
.yahoo.com/yui/) is a project of Yahoo, and indeed
the company uses it throughout its site. Yahoo pro-
grammers are constantly adding to and improving
the library, and they provide very good documenta-
tion on the YUI site.

• Dojo	 Toolkit	 (http://dojotoolkit.org/) is another li-
brary that has been around a long time. It’s a very

powerful and very large collection of JavaScript files
that tackle nearly every JavaScript task around.

• Mootools (http://mootools.net/) is another popular
library geared toward slick animation and visual ef-
fects. It has good documentation and a great-looking
website.

• Prototype (www.prototypejs.org/) was one of the
first JavaScript libraries available. It’s often used in
combination with a visual effects library named scrip-
taculous (http://script.aculo.us/), which adds anima-
tion and other user interface goodies.

Getting jQuery
jQuery is simply a bunch of JavaScript programming in an external JavaScript file.
Like any external JavaScript file (page 27), you need to link it to your web page.
However, because jQuery is so popular, you have a few choices when it comes to
adding it to a web page: You can either use a version hosted at Google, Microsoft, or
jQuery.com, or you can download the jQuery file to your own computer and add it
to your website.

The first method uses a CDN or content distribution network—that is, another web-
site hosts the jQuery file and sends it out to anyone who requests it. There are a
couple of benefits to this approach: First, you can save your web server a few mil-
liseconds by letting Google, Microsoft, or jQuery handle distributing the file to your
site’s visitors. In addition, CDNs have the added benefit of having servers located
around the globe. So if someone in Singapore, for example, visits your site, he’ll re-
ceive the jQuery file from a server that’s probably a lot closer to him than your web
server, which means he’ll get the file faster and your site will appear to run more
quickly. Lastly, and most importantly, because other designers use these CDNs as
well, there’s a pretty good chance that someone visiting your site already has the
jQuery file saved in their browser’s cache. Since he’s already downloaded the jQuery
file from Google while visiting another site, he doesn’t need to download it again
when visiting your site, resulting in a substantial speed increase.

http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/

120 javascript & jquery: the missing manual

Getting jQuery

There are a couple of downsides to using a CDN: First, visitors need to be connected
to the Internet for this method to work. That becomes an issue if you need to make
sure your site works offline, for example, in a kiosk at a museum or during a pro-
gramming demonstration in a classroom. In that case, you need to download the
jQuery file from jQuery.com (you’ll learn how below) and add it to your website.
Adding your own jQuery file also ensures that your website will continue to work if
the CDN servers go down. (Of course, if Google’s servers ever go down, then there
may be bigger problems in the world than whether your website works.)

Linking to the jQuery file on a CDN server
Microsoft, jQuery, and Google all let you include the jQuery file on one of your
web pages using their servers. For example, to link to version 1.6.3 of jQuery using
Microsoft’s CDN, you would add this line of code in the <head> of your web page
(just before the closing </head> tag), like this:

<script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.6.3.min.js">
</script>

Using the jQuery CDN, you’d use this code:
<script src="http://code.jquery.com/jquery-1.6.3.min.js"></script>

And the code using Google’s CDN looks like this:
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.6.3/jquery.min.
js"></script>

You only need to use one of these lines on your page, based on the CDN you prefer
to use. The Google CDN seems to be the most popular, so if you’re unsure of which
to use, use the Google servers.

Downloading your own jQuery file
You can easily download the jQuery file and add it to your site along with all your
other web pages and files. The tutorial files you downloaded for this book at www
.sawmac.com/js2e/ include the jQuery library file, but since the jQuery team updates
the library on a regular basis, you can find the latest version at http://docs.jquery
.com/Downloading_jQuery, listed under the Current Release headline.

To download the latest version of jQuery:

1. Visit http://docs.jquery.com/Downloading_jQuery.
This page has information about the code, a list of the CDNs mentioned above,
and previous versions of jQuery. You’re looking for the “Current Release.”

www.sawmac.com/js2e/
www.sawmac.com/js2e/
http://docs.jquery .com/Downloading_jQuery
http://docs.jquery .com/Downloading_jQuery

121chapter 4: introducing jquery

Getting jQuery

2. Click the “Current Release” link near the top of the page, or scroll down until
you see the Current Release headline.
The jQuery file comes in two versions on the download site—minified and
uncompressed. The uncompressed file is very large (over 200 k), and is only
provided so you can learn more about jQuery by looking at its code. The code
includes lots of comments (page 72) that help make clear what the different
parts of the file do. (But in order to understand the comments, you need to
know a lot about JavaScript.)
You should use the minified version for your websites. A minified file is much
smaller than a regular JavaScript file: All JavaScript comments and unnecessary
spaces are removed (tabs, linebreaks, and so on), making the file hard-to-read,
but faster to download.

Note: You can usually identify a minified JavaScript file by the appearance of .min in the file name; for
example, jquery-1.6.3.min.js indicates that this file contains the minified version of version 1.6.3 of jQuery.

3. Right-click (Control-click on Mac) the Minified link and from the contextual
menu that appears, choose Save Link As.
If you just click the link, you won’t download the file: Instead, the web browser
displays all the code in a browser window; so you need to use this “Save as”
method.

4. Navigate to the folder on your computer where you keep your website and
save the file.
You can save the jQuery file anywhere you want on your site, but many web
designers keep their external JavaScript files in a folder that’s dedicated to the
purpose. Usually the folder has a name like scripts, libs, js, or _js.

122 javascript & jquery: the missing manual

Adding jQuery to a
Page

FREQUENTLY ASKED QUESTION

jQuery Versions
I see that this book uses version 1.6.3 of jQuery, but the
current version on the jQuery site is 1.X. Is this a problem?

jQuery is always evolving. New bugs are often discovered,
and the jQuery team works diligently to fix them. In addi-
tion, as new web browsers come out with new capabilities
and better support for current standards, the jQuery team
updates jQuery to work most efficiently with those brows-
ers. Finally, new features are sometimes added to jQuery to
make it more useful for web programmers. For these rea-
sons, it’s likely that you can find a newer version of jQuery
than the one that’s used in this book. If there is a newer
version, then by all means use it.

jQuery has matured over the years and its core function-
ality changes very little. While the jQuery programmers
are often tinkering under the hood to make jQuery faster,
work better across browsers, and fix bugs, the way you
use jQuery doesn’t usually change that much. In other
words, while programmers might alter a jQuery function
to perform better, the way you use that function—the func-
tion name, the arguments you give it, and the values it re-
turns—don’t often change. This means that what you learn
in this book will most probably work with a newer version
of jQuery, but only faster and better.

You can often tell how much different one version of
jQuery is from another by the numbering scheme. The first
number points to a very significant new version. Currently

jQuery is in version 1, so we’ve seen version 1, 1.2, 1.3, 1.4,
and so on. Version 2 (which probably won’t arrive for quite
some time) will undoubtedly offer some significant new
capabilities. Then there are the dot releases like the .6 in
jQuery 1.6. Each of those numbers usually offers new func-
tions, rewriting of older functions to work better, and so
on. Finally, the last number, like the final 3 in jQuery 1.6.3,
usually refers to some sort of bug fix for the 1.6 branch of
jQuery. So if you’re using version 1.6.3 of jQuery and ver-
sion 1.6.8 comes out, it’s usually a good idea to upgrade, as
this will probably include fixes from problems discovered
in 1.6.3.

To find out what’s changed in a new version, just visit the
“Current release” section of the Downloads page at http://
docs.jquery.com/Downloading_jQuery#Current_Release.
There you’ll find a link to “Release notes.” Click that link
to visit a page listing changes made to that version. After
reading the list of changes, you can decide for yourself if it
seems worthwhile to upgrade (for example, if the changes
relate to features you don’t use on your site, you can prob-
ably skip this upgrade; however, if the changes are bug
fixes related to features you do use, it’s a good idea to up-
grade. (If you use jQuery plug-ins on your site, you’ll need
to be a bit more cautious about upgrading to the latest
version of jQuery, unless you’re sure the plug-in works with
the new version of jQuery.)

Adding jQuery to a Page
If you’re using one of the CDN versions of jQuery (page 120), you can point to it us-
ing one of the code snippets listed on page 120. For example, to use the Google CDN
version of jQuery, you’d add <script> tags to the head of the page like this:

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.6.3/jquery.min.
js"></script>

123chapter 4: introducing jquery

Adding jQuery to a
Page

Tip: When using the Google CDN, you can leave off parts of the version number. If you use 1.6 instead
of 1.6.1 in the link (<script src=”http://ajax.googleapis.com/ajax/libs/jquery/1.6/jquery.min.js”></script>),
then Google loads the latest version in the 1.6 family—1.6.3, for example. If jQuery is updated to 1.6.9,
then Google loads that version. This technique is smart since (as mentioned in the box on page 122) the
minor version changes 1.6.1 to 1.6.9 are often bug fixes that will improve the functioning of your site.

Once you’ve downloaded jQuery to your computer, you must attach it to the web
page you wish to use it on. The jQuery file is simply an external .js file, so you attach
it just like any external JavaScript file, as described on page 27. For example, say
you’ve stored the jquery.js file in a folder named js in your site’s root folder. To attach
the file to your home page, you’d add the following script tag to the head of the page:

<script src="js/jquery-1.6.3.min.js"></script>

Once you’ve attached the jQuery file, you’re ready to add your own scripts that take
advantage of jQuery’s advanced functions. The next step is to add a second set of
<script> tags with a little bit of jQuery programming in it:

<script src="js/jquery-1.6.3.min.js"></script>
<script>
$(document).ready(function() {
 // your programming goes here
});
</script>

The second set of <script> tags holds any programming you want to add to the
particular web page; however, you’re probably wondering what that $(document)
.ready() business is all about. The $(document).ready() function is a built-in jQuery
function that waits until the HTML for a page loads before it runs your script.

Why would you want to do that? Because a lot of JavaScript programming is about
manipulating the contents of a web page: for example, animating a div, fading an
image into view, making a menu drop down when a visitor moves over a link, and
so on. To do something fun and interactive with a page element, JavaScript needs to
select it. However, JavaScript can’t select an HTML tag until the web browser down-
loads it. Since a web browser immediately runs any JavaScript it encounters, the rest
of the page doesn’t download immediately. (You can see this effect in the quiz tuto-
rial from the last chapter. When you load that quiz, the page is blank. Only after you
finish the quiz does the content appear—that’s because the JavaScript for the quiz
runs first, before the web browser displays the HTML tags.)

In other words, in order to do cool stuff to the HTML on your page, you need to wait
until the page loads. That’s what the $(document).ready() function does: It simply
waits until the HTML is finished loading and then it runs the JavaScript code. If
all that seems super confusing, just keep in mind that you should always include a
.ready() function and that you need to put your code inside it between $(document)
.ready(function() { and the final });.

124 javascript & jquery: the missing manual

Modifying Web
Pages: An Overview

In addition, here are a few things to keep in mind:

• The link to the jQuery file must precede any programming that relies on
jQuery. In other words, don’t put any other script tags before the <script> tag
that loads jQuery.

• Put your JavaScript programming after any CSS stylesheets (both linked, exter-
nal stylesheets and internal stylesheets). Because jQuery programming often
references styles from a stylesheet, you should put your JavaScript program-
ming after the web browser has loaded any styles. A good rule of thumb is to put
your JavaScript programming (all your <script> tags) after any other content
inside the <head> tag, but before the closing </head> tag.

• Add a JavaScript comment—for example, //end ready—after the }); that marks
the end of the ready() function. For example:
$(document).ready(function() {
 // your programming goes here
}); // end ready

Putting a comment at the end of the function makes it easy to identify the end
of the program. As you’ll see later, jQuery often requires lots of little collections
of this brace, parenthesis, and semicolon trio. By adding a comment after them,
it’ll be much easier to identify which group of punctuation belongs to which
part of your program.

Tip: jQuery provides a shortcut method for writing $(document).ready(function() { }:

$(function() {

 // your programming goes here

}); // end ready

Modifying Web Pages: An Overview
JavaScript gives you the power to change a web page before your very eyes. Using
JavaScript, you can add pictures and text, remove content, or change the appearance
of an element on a page instantly. In fact, dynamically changing a web page is the
hallmark of the newest breed of JavaScript-powered websites. For example, Google
Maps (http://maps.google.com/) provides access to a map of the world; when you
zoom into the map or scroll across it, the page gets updated without the need to
load a new web page. Similarly, when you mouse over a movie title at Netflix (www
.netflix.com), an information bubble appears on top of the page providing more de-
tail about the movie (see Figure 4-1). In both of these examples, JavaScript is changing
the HTML that the web browser originally downloaded.

In this chapter, you’ll learn how to alter a web page using JavaScript. You’ll add new
content, HTML tags and HTML attributes, and also alter content and tags that are
already on the page. In other words, you’ll use JavaScript to generate new HTML and
change the HTML that’s already on the page.

www.netflix.com
www.netflix.com

125chapter 4: introducing jquery

Modifying Web
Pages: An Overview

Figure 4-1:
JavaScript can make web pages
simpler to scan and read by
only showing content when it’s
needed. At Netflix.com, movie
descriptions are hidden from
view, but revealed when the
mouse travels over the movie
title or thumbnail image.

It may seem hard to believe, but, if you know how to create web pages with HTML
and CSS, you already know a lot of what you need to effectively use JavaScript to cre-
ate interactive websites. For example, the popular Datepicker plug-in for the jQuery
UI project makes it easy for visitors to select a date on a form (for instance, as part of
a flight or event scheduler). When a visitor clicks into a specially marked text field,
a calendar pops up (see Figure 4-2). While the effect is really cool, and the calendar
makes it especially easy to pick a date, JavaScript provides only the interactivity—the
actual calendar is created with the same old HTML and CSS that you’re familiar with.

Figure 4-2:
The jQuery UI project (http://jqueryui
.com) provides useful user interface wid-
gets for web applications. The Datepicker,
for example, provides an easy, user-
friendly way to specify a date.

<div id=”ui-datepicker-div”>

<div class=”ui-datepicker-header”>

<table class=”ui-datepicker-calendar”>

http://jqueryui.com
http://jqueryui.com

126 javascript & jquery: the missing manual

Modifying Web
Pages: An Overview

If you look under the hood of the calendar, you’ll find a series of HTML tags such
as divs, a table, and <td> tags, with special classes and IDs (ui-datepicker-month,
ui-datepicker-div, and so on) applied to them. A style sheet with class and ID styles
adds color, typography, and formatting. In other words, you could create this same
calendar yourself with HTML and CSS. JavaScript just makes the presentation in-
teractive by making the calendar appear when a visitor clicks on a form field and
disappear when the visitor selects a date.

So one way of thinking about modern JavaScript programming—especially as it
applies to user interface design—is as a way to automate the creation of HTML and
the application of CSS. In the Netflix example in Figure 4-1, JavaScript makes the
pop-up information bubble appear when a visitor mouses over a movie, but the re-
ally fun part (the design of that info bubble) is simply a good use of HTML and
CSS…stuff you already know how to do!

So a lot of what you’ll use JavaScript for is manipulating a web page by adding new
content, changing the HTML of a page, or applying CSS to an element. Whenever
you change the content, HTML, or CSS on a page—whether you’re adding a naviga-
tion bar complete with pop-up menus, creating a JavaScript-driven slide show, or
simply making a page fade into view (as you did in the tutorial in Chapter 1)—you’ll
perform two main steps.

1. Select an element on a page.
An element is any existing tag, and before you can do anything with that ele-
ment, you need to select it using JavaScript (which you’ll learn how to do in
this chapter). For example, to make a page fade into view, you first must select
the page’s content (the <body> tag); to make a pop-up menu appear when you
mouse over a button, you need to select that button. Even if you simply want to
use JavaScript to add text to the bottom of a web page, you need to select a tag
to insert the text inside, before, or after that tag.

2. Do something with the element.
OK, “do something” isn’t a very specific instruction. That’s because there’s
nearly an endless number of things you can do with an element to alter the way
your web page looks or acts. In fact, most of this book is devoted to teaching you
different things to do to page elements. Here are a few examples:

• Change a property of the element. When animating a <div> across a page,
for example, you change that element’s position on the page.

• Add new content. If, while filling out a web form, a visitor incorrectly fills
out a field, it’s common to make an error message appear—“Please supply
an email address,” for example. In this case, you’re adding content some-
where in relation to that form field.

127chapter 4: introducing jquery

Understanding the
Document Object

Model
• Remove the element. In the Netflix example pictured in Figure 4-1, the

pop-up bubble disappears when you mouse off the movie title. In this case,
JavaScript removes that pop-up bubble from the page.

• Extract information from the element. Other times, you’ll want to know
something about the tag you’ve selected. For example, to validate a text
field, you need to select that text field, then find out what text was typed
into that field—in other words, you need to get the value of that field.

• Add/remove a class attribute. Sometimes you’ll want an element on a page
to change appearance: the text in a paragraph to turn blue, or the back-
ground color of a text field to turn red to indicate an error. While JavaScript
can make these visual changes, often the easiest way is to simply apply a
class and let a web browser make those visual changes based on a CSS style
from a style sheet. To change the text of a paragraph to blue, for example,
you can simply create a class style with blue text color, and use JavaScript to
apply the class to the paragraph dynamically.

Many times, you’ll do several of the things listed above at the same time. For
example, say you want to make sure a visitor doesn’t forget to type her email
address into a form field. If she tries to submit the form without her email ad-
dress, you can notify her. This task might involve first finding out if she’s typed
anything into that text field (extracting information from the element), printing
an error message (“adding new content”) if she doesn’t, and highlighting that
form field (by adding a class to the text field).

Selecting a page element is the first step. To understand how to identify and mod-
ify a part of a page using JavaScript, you first need to get to know the Document
Object Model.

Understanding the Document Object Model
When a web browser loads an HTML file, it displays the contents of that file on the
screen (appropriately styled with CSS, of course). But that’s not all the web browser
does with the tags, attributes, and contents of the file: It also creates and memorizes
a “model” of that page’s HTML. In other words, the web browser remembers the
HTML tags, their attributes, and the order in which they appear in the file—this
representation of the page is called the Document Object Model, or DOM for short.

The DOM provides the information needed for JavaScript to communicate with the
elements on the web page. The DOM also provides the tools necessary to navigate
through, change, and add to the HTML on the page. The DOM itself isn’t actually
JavaScript—it’s a standard from the World Wide Web Consortium (W3C) that most
browser manufacturers have adopted and added to their browsers. The DOM lets
JavaScript communicate with and change a page’s HTML.

128 javascript & jquery: the missing manual

Understanding the
Document Object
Model

To see how the DOM works, take look at this very simple web page:
<!DOCTYPE HTML>
<html>
<head>
<meta charset="UTF-8">
<title>A web page</title>
</head>
<body class="home">
<h1 id="header">A headline</h1>
<p>Some important text</p>
</body>
</html>

On this and all other websites, some tags wrap around other tags—like the <html>
tag, which surrounds all other tags, or the <body> tag, which wraps around the tags
and contents that appear in the browser window. You can represent the relationship
between tags with a kind of family tree (see Figure 4-3). The <html> tag is the “root”
of the tree—like the great-great-great granddaddy of all of the other tags on the
page—while other tags represent different “branches” of the family tree; for example,
the <head> and <body> tags, which each contain their own set of tags.

Figure 4-3:
The basic nested structure of an HTML page, where tags
wrap around other tags, is often represented in the form
of a family tree. Tags that wrap around other tags are
called ancestors, and tags inside other tags are called
descendents.

html

body class=”home”

ph1 id=”header”

strong

head

title

A headlineA web page Some

important

text

In addition to HTML tags, web browsers also keep track of the text that appears
inside a tag (for example, “A headline” inside the <h1> tag in Figure 4-3), as well as
the attributes that are assigned to each tag (the class attribute applied to the <body>
and <h1> tags in Figure 4-3). In fact, the DOM treats each of these—tags (also called
elements), attributes, and text—as individual units called nodes.

JavaScript provides several ways to select elements on a page so you can do some-
thing to them—like make them fade out of view or animate across the page. The
document.getElementById() method lets you select an element with a particular ID
applied to its HTML. So if you have a <div> tag with the ID banner applied to it—
<div id=“banner”>—you could select that div like this:

document.getElementById('banner');

Likewise, the document.getElementsByTagName() method selects every instance
of a particular tag (document.getElementsByTagName(‘a’), for example, selects all
anchor tags (links) on a page); and some browsers support methods for selecting
all elements with a particular class or using a CSS selector to select page elements.

129chapter 4: introducing jquery

Selecting Page
Elements: The

jQuery Way

WORKAROUND WORKShOP

The Problem with the DOM
Unfortunately, the major browsers have tranditionally in-
terpreted the DOM differently. For example, versions of
Internet Explorer prior to 9 handle events differently from
other browsers; the same HTML can produce more text
nodes in Firefox and Safari than in Internet Explorer; and
IE doesn’t always retrieve HTML tag attributes in the same
way as Firefox, Safari, or Opera. Also, different browsers
treat white space (like tabs and spaces) in HTML differ-
ently—in some cases treating white space like additional
text nodes (Firefox and Safari) and in other cases ignoring
that white space (IE). And those are just a few of the dif-
ferences between how the most common web browsers
handle the DOM.

Overcoming cross-browser JavaScript problems is such a
huge task for JavaScript programmers that an entire (very

boring) book could be dedicated to the subject. In fact,
many JavaScript books spend a lot of time showing you the
code needed to make the various browsers behave them-
selves. But life is too short—you’d rather be building interac-
tive user interfaces and adding cool effects to your websites,
instead of worrying about how to get your script to work
identically in Internet Explorer, Firefox, Safari, and Opera.

In addition, the traditional DOM methods for selecting
page elements aren’t very intuitive for web designers,
especially since you already have an excellent method
of selecting page elements—CSS selectors. Fortunately,
jQuery solves these problems and provides easy-to-use,
cross-browser compatible ways of selecting and working
with page elements.

Selecting Page Elements: The jQuery Way
As you read on the opposite page, web browsers provide two primary methods
for selecting an element on a web page—document.getElementById() and document
.getElementsByTagName(). Unfortunately, these two methods don’t provide the con-
trol needed to make more subtle kinds of selections. For example, if you want to
select every <a> tag with a class of navButton, you first need to select every tag, and
then go through each and find only the ones that have the proper class name.

Fortunately, jQuery offers a very powerful technique for selecting and working on
a collection of elements—CSS selectors. That’s right, if you’re used to using Cascad-
ing Style Sheets to style your web pages, you’re ready to use jQuery. A CSS selector
is simply the instruction that tells a web browser which tag the style applies to. For
example, h1 is a basic element selector, which applies a style to every <h1> tag, while
.copyright, is a class selector, which styles any tag that has a class attribute of copy-
right like this:

<p class="copyright">Copyright, 2011</p>

With jQuery, you select one or more elements using a special command called the
jQuery object. The basic syntax is like this:

$('selector')

You can use nearly all CSS 2.1 and many CSS 3 selectors when you create a jQuery
object (even if the browser itself doesn’t understand the particular selector—like IE
with certain CSS 3 selectors). For example, if you want to select a tag with a specific
ID of banner in jQuery, you can write this:

130 javascript & jquery: the missing manual

Selecting Page
Elements: The
jQuery Way

$('#banner')

The #banner is the CSS selector used to style a tag with the ID name banner—the #
part indicates that you’re identifying an ID. Of course, once you select one or more
elements, you’ll want to do something with them—jQuery provides many tools for
working with elements. For example, say you want to change the HTML inside an
element; you can write this:

$('#banner').html('<h1>JavaScript was here</h1>');

You’ll learn more about how to work with page elements using jQuery starting on
page 138, and throughout the rest of this book. But first, you need learn more about
using jQuery to select page elements.

Note: The latest versions of most browsers now include the ability to select elements by class name and
by using CSS selectors. However, since support for this isn’t the same across the browsers used world-
wide, jQuery helps out by making sure that your selections work even in that old antique, IE6.

Basic	Selectors
Basic CSS selectors like IDs, classes, and element selectors make up the heart of CSS.
They’re a great way to select a wide range of elements using jQuery.

Because reading about selectors isn’t the best way to gain an understanding of them,
this book includes an interactive web page so you can test selectors. In the testbed
folder of the book’s tutorial files, you’ll find a file named selectors.html. Open the
file in a web browser. You can test various jQuery selectors by typing them into the
selector box and clicking Apply (see Figure 4-4).

Note: See page 29 for information on where to find the tutorial files for this book.

ID selectors
You can select any page element that has an ID applied to it using jQuery and a CSS
ID selector. For example, say you have the following HTML in a web page:

<p id="message">Special message</p>

To select that element using the old DOM way, you’d write this:
var messagePara = document.getElementById('message');

The jQuery method looks like this:
var messagePara = $('#message');

Unlike with the DOM method, you don’t just use the ID name (‘message’); you have
to use the CSS-syntax for defining an ID selector (‘#message’). In other words, you
include the pound sign before the ID name, just as if creating a CSS style for that ID.

131chapter 4: introducing jquery

Selecting Page
Elements: The

jQuery Way

Figure 4-4:
The file selectors.html, provided
with this book’s tutorial files,
lets you try out jQuery selec-
tors. Type a selector in the
Selector form field (circled),
and then click Apply. The page
converts your selector into a
jQuery object, and any ele-
ments that match the selector
you typed turn red. Below the
field is the jQuery code used
to select the item, as well as
the total number or elements
selected. In this case, p is the
selector, and all <p> tags on
the page (there are 12 on this
page) are highlighted in red.

Element selectors
jQuery also has its own replacement for the getElementsByTagName() method. Just
pass the tag’s name to jQuery. For example, using the old DOM method to select
every <a> tag on the page, you’d write this:

var linksList = document.getElementsByTagName('a');

With jQuery, you’d write this:
var linksList = $('a');

Tip: jQuery supports an even wider range of selectors than are listed here. Although this book lists many
useful ones, you can find a complete list of jQuery selectors at http://api.jquery.com/category/selectors/.

Class selectors
Another useful way of selecting elements is by class name. For example, suppose
you want to create a navigation bar that includes drop-down menus; when a visitor
mouses over one of the main navigation buttons, you want a drop-down menu to
appear. You need to use JavaScript to control those menus, and you need a way to

132 javascript & jquery: the missing manual

Selecting Page
Elements: The
jQuery Way

program each of the main navigation buttons to open a drop-down menu when
someone mouses over the button.

Note: Because finding all elements with a particular class name is such a common task, the latest version
of most browsers support a method to do that. But since not all browsers have a built-in way to find
elements of a specific class (like IE8 and earlier), a library like jQuery, which takes the different browsers
into account, is invaluable.

One technique is to add a class—like navButton—to each of the main navigation bar
links, and then use JavaScript to search for links with just that class name and apply
all of the magical menu-opening power to those links (you’ll learn how to do that, by
the way, on page 249). This scheme may sound confusing, but the important point
for now is that to make this navigation bar work, you need a way to select only the
links with a specific class name.

Fortunately, jQuery provides an easy method to select all elements with the same
class name. Just use a CSS class selector like this:

$('.submenu')

Again, notice that you write the CSS class selector just like, well, a CSS class selector,
with the period before the class name. Once you select those tags, you can manipu-
late them using jQuery. For example, to hide all tags with the class name of .submenu,
you’d write this:

$('.submenu').hide();

You’ll learn more about the jQuery hide() function on page 187, but for now, this
example gives you a bit of an idea of how jQuery works.

UP TO SPEED

Understanding CSS
Cascading Style Sheets are a big topic in any discussion of
JavaScript. To get the most out of this book, you need to
have at least some background in web design and know a
bit about CSS and how to use it. CSS is the most important
tool a web designer has for creating beautiful websites, so
if you don’t know much about it, now’s the time to learn.
Not only will CSS help you use jQuery, but you’ll find that
you can use JavaScript in combination with CSS to easily
add interactive visual effects to a web page.

If you need some help getting up to speed with CSS, there
are plenty of resources at your disposal:

For a basic overview on CSS, try the HTML Dog CSS Tutorials
www.htmldog.com/guides/. You’ll find basic, intermediate,
and advanced tutorials at the site.

You can also pick up a copy of CSS: The Missing Manual,
which provides thorough coverage of CSS (including many
hands-on tutorials just like the ones in this book).

Most of all, when working with jQuery, it’s very important
to understand CSS selectors—the instructions that tell a web
browser which tag a CSS rule applies to. To get a handle on
selectors, the resources in this box are very good. There are
also a few places to go if you just want a refresher on the
different selectors that are available:

• http://css.maxdesign.com.au/selectutorial/

• http://www.456bereastreet.com/archive/200601/
css_3_selectors_explained/

133chapter 4: introducing jquery

Selecting Page
Elements: The

jQuery Way

Advanced	Selectors
jQuery also lets you use more complicated CSS selectors to accurately pinpoint the
tags you wish to select. Don’t worry too much about mastering these right now:
Once you’ve read a few more chapters and gained a better understanding of how
jQuery works and how to use it to manipulate a web page, you’ll probably want to
turn back to this section and take another look.

• Descendent selectors provide a way to target a tag inside another tag. For ex-
ample, say you’ve created an unordered list of links and added an ID name of
navBar to the list’s tag like this: <ul id=“navBar”>. The jQuery expression
$(‘a’) selects all <a> tags on the page. However, if you want to select only the
links inside the unordered list, you use a descendent selector like this:
$('#navBar a')

Again, this syntax is just basic CSS: a selector, followed by a space, followed by
another selector. The selector listed last is the target (in this case, a), while each
selector to the left represents a tag that wraps around the target.

• Child selectors target a tag that’s the child of another tag. A child tag is the
direct descendent of another tag. For example, in the HTML diagrammed
in Figure 4-3, the <h1> and <p> tags are children of the <body> tag, but the
 tag is not (since it’s wrapped by the <p> tag). You create a child selec-
tor by first listing the parent element, followed by a >, and then the child element.
For example, to select <p> tags that are the children of the <body> tag, you’d
write this:
$('body > p')

• Adjacent sibling selectors let you select a tag that appears directly after another
tag. For example, say you have an invisible panel that appears when you click a
tab. In your HTML, the tab might be represented by a heading tag (say <h2>),
while the hidden panel is a <div> tag that follows the header. To make the <div>
tag (the panel) visible, you’ll need a way to select it. You can easily do so with
jQuery and an adjacent sibling selector:
$('h2 + div')

To create an adjacent sibling selector, just add a plus sign between two selectors
(which can be any type of selector: IDs, classes, or elements). The selector on the
right is the one to select, but only if it comes directly after the selector on the left.

• Attribute selectors let you select elements based on whether the element has a
particular attribute, and even check to make sure the attribute matches a spe-
cific value. With an attribute selector, you can find tags that have the alt
attribute set, or even match an tag that has a particular alt text value. Or
you could find every link tag that points outside your site, and add code to just
those links, so they’ll open in new windows.
You add the attribute selector after the name of the element whose attribute
you’re checking. For example, to find tags that have the alt attribute set,
you write this:

134 javascript & jquery: the missing manual

Selecting Page
Elements: The
jQuery Way

$('img[alt]')

There are a handful of different attribute selectors:

• [attribute] selects elements that have the specified attribute assigned in
the HTML. For example, $(a[href]) locates all <a> tags that have an href
attribute set. Selecting by attribute lets you exclude named anchors—
—that are simply used as in-page links.

• [attribute=“value”] selects elements that have a particular attribute with a spe-
cific value. For example, to find all text boxes in a form, you can use this:
$('input[type="text"]')

Since most form elements share the same tag—<input>—the only way to tell
the type of form element is to check its type attribute (selecting form elements
is so common that jQuery includes specific selectors just for that purpose, as
described on page 259).

• [attribute^=“value”] matches elements with an attribute that begins with a spe-
cific value. For example, if you want to find links that point outside your site,
you can use this code:
$('a[href^="http://"]')

Notice that the entire attribute value doesn’t have to match just the beginning.
So href^=http:// matches links that point to http://www.yahoo.com, http://www
.google.com, and so on. Or you could use this selector to identify mailto: links
like this:
$('a[href^="mailto:"]')

• [attribute$=“value”] matches elements whose attribute ends with a specific val-
ue, which is great for matching file extensions. For example, with this selector,
you can locate links that point to PDF files (maybe to use JavaScript to add a
special PDF icon, or dynamically generate a link to Adobe.com so your visitor
can download the Acrobat Reader program). The code to select links that point
to PDF files looks like this:
$('a[href$=".pdf"]')

• [attribute*=“value”] matches elements whose attribute contains a specific value
anywhere in the attribute. For example, you can find any type of link that points
to a particular domain. For example, here’s how to find a link that points to
missingmanuals.com (http://missingmanuals.com):
$('a[href*="missingmanuals.com"]')

This selector provides the flexibility to find not only links that point to http://
www.missingmanuals.com, but also http://missingmanuals.com and http://www
.missingmanuals.com/library.html.

Note: jQuery has a set of selectors that are useful when working with forms. They let you select ele-
ments such as text fields, password fields, and selected radio buttons. You’ll learn about these selectors
on page 259.

http://www.google.com
http://www.google.com
http://www.missingmanuals.com/library.html
http://www.missingmanuals.com/library.html

135chapter 4: introducing jquery

Selecting Page
Elements: The

jQuery Way

jQuery	Filters
jQuery also provides a way to filter your selections based on certain characteristics.
For example, the :even filter lets you select every even element in a collection of
elements. In addition, you can find elements that contain particular tags, specific
text, elements that are hidden from view, and even elements that do not match a
particular selector. To use a filter, you add a colon followed by the filter’s name after
the main selector. For example, to find every even row of a table, write your jQuery
selector like this:

$('tr:even')

This code selects every even <tr> tag. To narrow down the selection, you may want
to just find every even table row in a table with class name of striped. You can do that
like this:

$('.striped tr:even')

Here’s how :even and other filters work:

• :even and :odd select every other element in a group. These filters work a little
counter-intuitively; just remember that a jQuery selection is a list of all elements
that match a specified selector. In that respect, they’re kind of like arrays (see
page 59). Each element in a jQuery selection has an index number—remember
that index values for arrays always start at 0 (see page 62). So, since :even filters
on even index values (like 0, 2, and 4), this filter actually returns the first, third,
and fifth items (and so on) in the selection—in other words, it’s really selecting
every other odd element! The :odd filter works the same except it selects every
odd index number (1, 3, 5, and so on).

• :first and :last select the first or the last element in a group. For example, if you
wanted to select the first paragraph on a page, you’d type this:
$('p:first');

And to select the last paragraph on a page, you’d type this:
$('p:last');

• You can use :not() to find elements that don’t match a particular selector type.
For example, say you want to select every <a> tag except ones with a class of
navButton. Here’s how to do that:
$('a:not(.navButton)');

You give the :not() function the name of the selector you wish to ignore. In this
case, .navButton is a class selector, so this code translates to “does not have the
class of .navButton.” You can use :not() with any of the jQuery filters and with
most jQuery selectors; so, for example, to find every link that doesn’t begin with
http://, you can write this:
$('a:not([href^="http://"])')

• :has() finds elements that contain another selector. For example, say you want
to find all tags, but only if they have an <a> tag inside them. You’d do that
like this:
$('li:has(a)')

136 javascript & jquery: the missing manual

Selecting Page
Elements: The
jQuery Way

This setup is different from a descendent selector, since it doesn’t select the <a>;
it selects tags, but only those tags with a link inside them.

• :contains() finds elements that contain specific text. For example, to find every
link that says “Click Me!” you can create a jQuery object like this:
$('a:contains(Click Me!)')

• :hidden locates elements that are hidden, which includes elements that either
have the CSS display property set to none (which means you won’t see them on
the page), elements you hide using jQuery’s hide() function (discussed on page
187), elements with width and height values set to 0, and hidden form fields.
(This selector doesn’t apply to elements whose CSS visibility property is set to
invisible.) For example, say you’ve hidden several <div> tags; you can find them
and then make them visible using jQuery, like this:
$('div:hidden').show();

This line of code has no effect on <div> tags that are currently visible on the
page. (You’ll learn about jQuery’s show() function on page 187.)

• :visible is the opposite of :hidden. It locates elements that are visible on the page.

Understanding	jQuery	Selections
When you select one or more elements using the jQuery object—for example,
$(‘#navBar a’)—you don’t end up with a traditional list of DOM nodes, like the ones
you get if you use getElementById() or getElementsByTagName(). Instead, you get a
special jQuery-only selection of elements. These elements don’t understand the
traditional DOM methods; so, if you learned about the DOM in another book, you’ll
find that none of the methods you learned there work with the jQuery object as-is.
That may seem like a major drawback, but nearly all of the properties and methods
of a normal DOM node have jQuery equivalents, so you can do anything the tradi-
tional DOM can do—only usually much faster and with fewer lines of code.

There are, however, two big conceptual differences between how the DOM works
and how jQuery selections work. jQuery was built to make it a lot easier and faster to
program JavaScript. One of the goals of the library is to let you do a lot of stuff with
as few lines of code as possible. To achieve that, jQuery uses two unusual principles.

Automatic loops
Normally, when you’re using the DOM and you select a bunch of page elements, you
then need to create a loop (page 93) to go through each node selected and do some-
thing to that node. For example, if you want to select all the images in a page and
then hide them—something you might do if you want to create a JavaScript-driven
slideshow—you must first select the images and then create a loop to go through the
list of images.

137chapter 4: introducing jquery

Selecting Page
Elements: The

jQuery Way
Because looping through a collection of elements is so common, jQuery functions
have that feature built right in. In other words, when you apply a jQuery function to
a selection of elements, you don’t need to create a loop yourself, since the function
does it automatically.

For example, to select all images inside a <div> tag with an ID of slideshow and then
hide those images, you write this in jQuery:

$('#slideshow img').hide();

The list of elements created with $(‘#slideshow img’) might include 50 images. The
hide() function automatically loops through the list, hiding each image individu-
ally. This setup is so convenient (imagine the number of for loops you won’t have to
write) that it’s surprising that this great feature isn’t just part of the JavaScript.

Chaining functions
Sometimes you’ll want to perform several operations on a selection of elements.
For example, say you want to set the width and height of a <div> tag (with an ID of
popUp) using JavaScript. Normally, you’d have to write at least two lines of code. But
jQuery lets you do so with a single line:

$('#popUp').width(300).height(300);

jQuery uses a unique principle called chaining, which lets you add functions one
after the other. Each function is connected to the next by a period, and operates on
the same jQuery collection of elements as the previous function. So the code above
changes the width of the element with the ID popUp, and changes the height of the
element. Chaining jQuery functions lets you concisely carry out a large number of
actions. For example, say you not only want to set the width and height of the <div>
tag, but also want to add text inside the <div> and make it fade into view (assuming
it’s not currently visible on the page). You can do that very succinctly like this:

$('#popUp').width(300).height(300).text('Hi!').fadeIn(1000);

This code applies four jQuery functions—width(), height(), text(), and fadeIn()—to
the tag with an ID name of popUp.

Tip: A long line of chained jQuery functions can be hard to read, so some programmers break it up over
multiple lines like this:

$('#popUp').width(300)

 .height(300)

 .text('Message')

 .fadeIn(1000);

As long as you only add a semicolon on the last line of the chain, the JavaScript interpreter treats the lines
as a single statement.

138 javascript & jquery: the missing manual

Adding Content to
a Page

The ability to chain functions is pretty unusual and is a specific feature of jQuery—
in other words, you can’t add non-jQuery functions (either ones you create or built-
in JavaScript functions) in the chain.

Adding Content to a Page
jQuery provides many functions for manipulating elements and content on a page,
from simply replacing HTML, to precisely positioning new HTML in relation to a
selected element, to completely removing tags and content from the page.

Note: An example file, content_functions.html, located in the testbed tutorial folder, lets you take each of
these jQuery functions for a test drive. Just open the file in a web browser, type some text in the text box,
and click any of the boxes to see how each function works.

To study the following examples of these functions, assume you have a page with the
following HTML:

<div id="container">
 <div id="errors">
 <h2>Errors:</h2>
 </div>
</div>

• .html() can both read the current HTML inside an element and replace the
current contents with some other HTML. You use the html() function in con-
junction with a jQuery selection.
To retrieve the HTML currently inside the selection, just add .html() after the
jQuery selection. For example, you can run the following command using the
HTML snippet at the beginning of this section:
alert($('#errors').html());

This code creates an alert box with the text “<h2>Errors:</h2>” in it. When you
use the html() function in this way, you can make a copy of the HTML inside a
specific element and paste it into another element on a page.
If you supply a string as an argument to .html(), you replace the current contents
inside the selection:
$('#errors').html('<p>There are four errors in this form</p>');

This line of code replaces all of the HTML inside an element with an ID of errors.
It would change the example HTML snippet to:
<div id="container">
 <div id="errors">
 <p>There are four errors in this form</p>
 </div>
</div>

Notice that it replaces the <h2> tag that was already there. You can avoid replac-
ing that HTML using other functions listed below.

139chapter 4: introducing jquery

Adding Content to
a Page

• .text() works like .html() but it doesn’t accept HTML tags. It’s useful when you
want to replace the text within a tag. For example, in the code at the beginning
of this section, you’ll see an <h2> tag with the text “Errors:” in it. Say, after run-
ning a program to check to see if there were any errors in the form, you wanted
to replace the text “Errors:” with “No errors found”, you could use this code:
$('#errors h2').text('No errors found');

The <h2> tag stays in place; only the text inside changes. jQuery encodes any
HTML tags that you pass to the text() function, so that <p> is translated to
<p>. This can come in handy if you want you to actually display the brack-
ets and tag names on the page. For example, you can use it to display example
HTML code for other people to view.

• .append() adds HTML as the last child element of the selected element. For
example, say you select a <div> tag, but instead of replacing the contents of
the <div>, you just want to add some HTML before the closing </div> tag. The
.append() function is a great way to add an item to the end of a bulleted ()
or numbered () list. As an example, say you run the following code on a
page with the HTML listed at the beginning of this section:
$('#errors').append('<p>There are four errors in this form</p>');

After this function runs, you end up with HTML like this:
<div id="container">
 <div id="errors">
 <h2>Errors:</h2>
 <p>There are four errors in this form</p>
 </div>
</div>

Notice that the original HTML inside the <div> remains the same, and the new
chunk of HTML is added after it.

• .prepend() is just like .append(), but adds HTML directly after the opening tag
for the selection. For example, say you run the following code on the same
HTML listed previously:
$('#errors').prepend('<p>There are four errors in this form</p>');

After this prepend() function, you end up with the following HTML:
<div id="container">
 <div id="errors">
 <p>There are four errors in this form</p>
 <h2>Errors:</h2>
 </div>
</div>

Now the newly added content appears directly after the <div>’s opening tag.
• If you want to add HTML just outside of a selection, either before the selected

element’s opening tag or directly after the element’s closing tag, use the .before()
or .after() functions. For example, it’s common practice to check a text field in a
form to make sure that the field isn’t empty when your visitor submits the form.
Assume that the HTML for the field looks like the following before the form
is submitted:

140 javascript & jquery: the missing manual

Adding Content to
a Page

<input type="text" name="userName" id="userName">

Now suppose that when the visitor submits the form, this field is empty. You can
write a program that checks the field and then adds an error message after the
field. To add the message after this field (don’t worry right now about how you
actually check that the contents of form fields are correct—you’ll find out on
page 278), you can use the .after() function like this:
$('#userName').after('User name required');

That line of code makes the web page show the error message, and the HTML
component would look like this:
<input type="text" name="userName" id="userName">
User name required

The .before() function simply puts the new content before the selected element.

Note: The functions listed in this section—html(), text(), and so on—are the most popular ways of adding
and altering content on a page but they’re not the only ones. You can find more functions at http://api
.jquery.com/category/manipulation/.

Replacing	and	Removing	Selections
At times you may want to completely replace or remove a selected element. For
example, say you’ve created a pop-up dialog box using JavaScript (not the old-
fashioned alert() method, but a more professional-looking dialog box that’s actually
just an absolutely-positioned <div> floating on top of the page). When the visitor
clicks the “Close” button on the dialog box, you naturally want to remove the dialog
box from the page. To do so, you can use the jQuery remove() function. Say the pop-
up dialog box had an ID of popup; you can use the following code to delete it:

$('#popup').remove();

The .remove() function isn’t limited to just a single element. Say you want to remove
all tags that have a class of error applied to them; you can do this:

$('span.error').remove();

You can also completely replace a selection with new content. For example, suppose
you have a page with photos of the products your company sells. When a visitor
clicks on an image of a product, it’s added to a shopping cart. You might want to
replace the tag with some text when the image is clicked (“Added to cart,”
for example). You’ll learn how to make particular elements react to events (like an
image being clicked) in the next chapter, but for now just assume there’s an
tag with an ID of product101 that you wish to replace with text. Here’s how you do
that with jQuery:

$('#product101').replaceWith(<p>Added to cart</p>');

This code removes the tag from the page and replaces it with a <p> tag.

http://api.jquery.com/category/manipulation/
http://api.jquery.com/category/manipulation/

141chapter 4: introducing jquery

Setting and Reading
Tag Attributes

Note: jQuery also includes a function named clone() that lets you make a copy of a selected element.
You’ll see this function in action in the tutorial on page 150.

hELPFUL TOOL ALERT

Skip View Source
One problem with using JavaScript to manipulate the DOM
by adding, changing, deleting, and rearranging HTML code
is that it’s hard to figure out what the HTML of a page looks
like when JavaScript is finished. For example, the View
Source command available in every browser only shows
the web page file as it was downloaded from the web serv-
er. In other words, you see the HTML before it was changed
by JavaScript, which can make it very hard to figure out if
the JavaScript you’re writing is really producing the HTML
you’re after. For example, if you could see what the HTML
of your page looks like after your JavaScript adds 10 error
messages to a form page, or after your JavaScript program
creates an elaborate pop-up dialog box complete with text
and form fields, it would be a lot easier to see if you’re end-
ing up with the HTML you want.

Fortunately, most major browsers offer a set of developer
tools that let you view the rendered HTML—the HTML that
the browser displays after JavaScript has done its magic.
Usually the tools appear as a pane at the bottom of the
browser window, below the web page. Different tabs let
you access JavaScript code, HTML, CSS, and other useful
resources. The exact name of the tab and method for turn-
ing on the tools panel varies from browser to browser:

• In Firefox, install the Firebug plug-in (discussed on
page 477). Open a page with the JavaScript code you
wish to see and open Firebug (Tools→Firebug→Open
Firebug). Click the HTML tab in the Firebug panel,
and you’ll see the complete DOM (including any

HTML generated by JavaScript). Alternatively, you
can use the Web Developer toolbar (https://addons
.mozilla.org/en-US/firefox/addon/web-developer/) in
Firefox to view both the regular HTML source, and
the generated HTML.

• In IE 9, press the F12 key to open the Developer
Tools panel, then click the HTML tab to see the
page’s HTML. In the case of IE9, the HTML tab starts
by showing the downloaded HTML (the same as the
View Source command). But if you click the refresh
icon (or press F5), the HTML tab shows the rendered
HTML complete with any JavaScript-created changes.

• In Chrome, select View→Developer→Developer
Tools and click the Elements tab in the panel at the
bottom of the browser window.

• In Safari, make sure the Developer menu is on
(choose Safari→Preferences, click the Advanced
button, and make sure the “Show Develop menu in
menu bar” is checked. Then open the page you’re
interested in looking at, and choose Develop→Show
Web Inspector. Click the Elements tab in the panel
that appears at the bottom of the browser window.

• In Opera, choose Tools→Advanced→Opera Dragon-
fly. (Dragonfly is the name of Opera’s built-in set of
developer tools.) In the panel that appears at the bot-
tom of the browser window, click the Documents tab.

Setting and Reading Tag Attributes
Adding, removing, and changing elements isn’t the only thing jQuery is good at, and
it’s not the only thing you’ll want to do with a selection of elements. You’ll often want
to change the value of an element’s attribute—add a class to a tag, for example, or
change a CSS property of an element. You can also get the value of an attribute—for
instance, what URL does a particular link point to?

142 javascript & jquery: the missing manual

Setting and Reading
Tag Attributes

Classes
Cascading Style Sheets are a very powerful technology, letting you add all sorts of
sophisticated visual formatting to your HTML. One CSS rule can add a colorful
background to a page, while another rule might completely hide an element from
view. You can create some really advanced visual effects simply by using JavaScript
to remove, add, or change a class applied to an element. Because web browsers pro-
cess and implement CSS instructions very quickly and efficiently, simply adding a
class to a tag can completely change that tag’s appearance—even make it disappear
from the page.

jQuery provides several functions for manipulating a tag’s class attribute:

• addClass() adds a specified class to an element. You add the addClass() after a
jQuery selection and pass the function a string, which represents the class name
you wish to add. For example, to add the class externalLink to all links pointing
outside your site, you can use this code:
$('a[href^="http://"]').addClass('externalLink');

This code would take HTML like this:

And change it to the following:

For this function to be of any use, you’ll need to create a CSS class style before-
hand and add it to the page’s style sheet. Then, when the JavaScript adds the
class name, the web browser can apply the style properties from the previously
defined CSS rule.

Note: When using the addClass() and removeClass() functions, you only supply the class name—leave
out the period you normally use when creating a class selector. For example, addClass(‘externalLink’) is
correct, but addClass(‘.externalLink’) is wrong.

This jQuery function also takes care of issues that arise when a tag already has
a class applied to it—the addClass() function doesn’t eliminate the old classes
already applied to the tag; the function just adds the new class as well.

Note: Adding multiple class names to a single tag is perfectly valid and frequently very helpful. Check out
www.cvwdesign.com/txp/article/177/use-more-than-one-css-class for more information on this technique.

• removeClass() is the opposite of addClass(). It removes the specified class from
the selected elements. For example, if you wanted to remove a class named high-
light from a <div> with an ID of alertBox, you’d do this:
$('#alertBox').removeClass('highlight');

143chapter 4: introducing jquery

Setting and Reading
Tag Attributes

• Finally, you may want to toggle a particular class—meaning add the class if it
doesn’t already exist, or remove the class if it does. Toggling is a popular way to
show an element in either an on or off state. For example, when you click a radio
button, it’s checked (on); click it again, and the checkmark disappears (off).
Say you have a button on a web page that, when clicked, changes the <body>
tag’s class. By so doing, you can add a complete stylistic change to a web page
by crafting a second set of styles using descendent selectors. When the button is
clicked again, you want the class removed from the <body> tag, so that the page
reverts back to its previous appearance. For this example, assume the button the
visitor clicks to change the page’s style has an ID of changeStyle and you want
to toggle the class name altStyle off and on with each click of the button. Here’s
the code to do that:
$('#changeStyle').click(function() {
 $('body').toggleClass('altStyle');
});

At this point, don’t worry about the first and third lines of code above; those
have to do with events that let scripts react to actions—like clicking the button—
that happen on a page. You’ll learn about events in the next chapter. The bolded
line of code demonstrates the toggleClass() function; it either adds or removes
the class altStyle with each click of the button.

Reading	and	Changing	CSS	Properties
jQuery’s css() function also lets you directly change CSS properties of an element,
so instead of simply applying a class style to an element, you can immediately add a
border or background color, or set a width or positioning property. You can use the
css() function in three ways: to find the current value for an element’s CSS property,
to set a single CSS property on an element, or to set multiple CSS properties at once.

To determine the current value of a CSS property, pass the name of the property to
the css() function. For example, say you want to find the background color of a <div>
tag with an ID of main:

var bgColor = $('#main').css('background-color');

After this code runs, the variable bgColor will contain a string with the element’s
background color value.

Note: jQuery may not always return CSS values the way you expect. In the case of colors (like the CSS
background color, or color properties), jQuery always returns either an rgb value like rgb(255, 0, 10)
or, if there is any transparency in the color, an rgba color value like rgba(255,10,10,.5). jQuery returns
RGB values regardless of whether the color in the stylesheet was defined using hexadecimal notation
(#F4477A), RGB using percentages (rgb(100%,10%,0%), or HSL (hsl(72,100%,50%). In addition, jQuery
doesn’t understand shorthand CSS properties like font, margin, padding, or border. Instead, you have to
use the specific CSS properties like font-face, margin-top, padding-bottom, or border-bottom-width to
access styles that can be combined in CSS shorthand. Finally, jQuery translates all unit values to pixels, so
even if you use CSS to set the <body> tag’s font-size to 150%, jQuery returns a pixel value when checking
the font-size property.

144 javascript & jquery: the missing manual

Setting and Reading
Tag Attributes

The css() function also lets you set a CSS property for an element. To use the func-
tion this way, you supply two arguments to the function: the CSS property name and
a value. For example, to change the font size for the <body> tag to 200% size, you
can do this:

$('body').css('font-size', '200%');

The second argument you supply can be a string value, like ‘200%’, or a numeric
value, which jQuery translates to pixels. For example, to change the padding inside
all of the tags with a class of .pullquote to 100px, you can write this code:

$('.pullquote').css('padding',100);

In this example, jQuery sets the padding property to 100 pixels.

Note: When you set a CSS property using jQuery’s .css() function, you can use the CSS shorthand
method. For example, here’s how you could add a black, one-pixel border around all paragraphs with a
class of highlight:

$('p.highlight').css('border', '1px solid black');

It’s often useful to change a CSS property based on its current value. For example, say
you want to add a “Make text bigger” button on a web page, so when a visitor clicks
the button, the page’s font-size doubles. To make that happen, you read the value,
and then set a new value. In this case, you first determine the current font-size and
then set the font-size to twice that value. It’s a little trickier than you might think.
Here’s the code, and a full explanation follows:

var baseFont = $('body').css('font-size');
baseFont = parseInt(baseFont,10);
$('body').css('font-size',baseFont * 2);

The first line retrieves the <body> tag’s font-size value—the returned value is in
pixels and is a string like this: ‘16px’. Since you want to double that size—multiply-
ing it by 2—you must convert that string to a number by removing the “px” part of
the string. The second line accomplishes that using the JavaScript parseInt() method
discussed on page 446. That function essentially strips off anything following the
number, so after line 2, baseFont contains a number, like 16. Finally, the third line
resets the font-size property by multiplying the baseFont value by 2.

Note: This code affects the page’s type size only if the other tags on the page—paragraphs, headlines, and
so on—have their font-size set using a relative value like ems or percentages. If the other tags use absolute
values like pixels, changing the <body> tag’s font size won’t affect them.

Changing	Multiple	CSS	Properties	at	Once
If you want to change more than one CSS property on an element, you don’t need to
resort to multiple uses of the .css() function. For example, if you want to dynamically

145chapter 4: introducing jquery

Setting and Reading
Tag Attributes

highlight a <div> tag (perhaps in reaction to an action taken by a visitor), you can
change the <div> tag’s background color and add a border around it, like this:

$('#highlightedDiv').css('background-color','#FF0000');
$('#highlightedDiv').css('border','2px solid #FE0037');

Another way is to pass what’s called an object literal to the .css() function. Think of
an object literal as a list of property name/value pairs. After each property name, you
insert a colon (:) followed by a value; each name/value pair is separated by a comma,
and the whole shebang is surrounded by braces—{}. Thus, an object literal for the
two CSS property values above looks like this:

{ 'background-color' : '#FF0000', 'border' : '2px solid #FE0037' }

Because an object literal can be difficult to read if it’s crammed onto a single line,
many programmers break it up over multiple lines. The following is functionally the
same as the previous one-liner:

{
 'background-color' : '#FF0000',
 'border' : '2px solid #FE0037'
}

The basic structure of an object literal is diagrammed in Figure 4-5.

Warning: When creating an object literal, make sure to separate each name/value pair by adding a
comma after the value (for instance, in this example, the comma goes after the value ‘#FF0000’. However,
the last property/value pair should not have a comma after it, since no property/value pair follows it. If
you do add a comma after the last value, some web browsers (including Internet Explorer) will generate
an error.

Figure 4-5:
A JavaScript object literal provides a way to create a list
of properties and values. Java Script treats the object
literal as a single block of information—just as an array
is a list of values. You’ll use an object literal like this
frequently when setting options for jQuery plug-ins.

Beginning of object

End of object

Property Value

Separates property from value

Separates one property/value
pair from the next pair

{
 'background-color' , '#FF0000',
 'border' , '2px solid #FE0037'
}

To use an object literal with the css() function, just pass the object to the function
like this:

$('#highlightedDiv').css({
 'background-color' : '#FF0000',
 'border' : '2px solid #FE0037'
});

146 javascript & jquery: the missing manual

Reading, Setting,
and Removing HTML
Attributes

Study this example closely, because it looks a little different from what you’ve seen so
far, and because you’ll be encountering lots of code that looks like it in future chap-
ters. The first thing to notice is that this code is merely a single JavaScript statement
(essentially just one line of code)—you can tell because the semicolon that ends the
statement doesn’t appear until the last line. The statement is broken over four lines
to make the code easier to read.

Next, notice that the object literal is an argument (like one piece of data) that’s passed
to the css() function. So in the code css({, the opening parenthesis is part of the func-
tion, while the opening { marks the beginning of the object. The three characters in
the last line break down like this: } is the end of the object and the end of the argu-
ment passed to the function;) marks the end of the function, the last parenthesis in
css(); and ; marks the end of the JavaScript statement.

And if all this object literal stuff is hurting your head, you’re free to change CSS
properties one line at a time, like this:

$('#highlightedDiv').css('background-color','#FF0000');
$('#highlightedDiv').css('border','2px solid #FE0037');

Or, a better method is to use jQuery’s built-in chaining ability (page 137). Chaining
is applying several jQuery functions to a single collection of elements by adding that
function to the end of another function, like this:

$('#highlightedDiv').css('background-color','#FF0000')
 .css('border','2px solid #FE0037');

This code can be translated as: find an element with an ID of highlightedDiv and
change its background color, then change its border color. Chaining provides better
performance than making the selection—$(‘#highlightedDiv’)—twice as in the code
above, because each time you make a selection you make the web browser run all of
the jQuery code for selecting the element. Thus, this code is not optimal.

$('#highlightedDiv').css('background-color','#FF0000');
$('#highlightedDiv').css('border','2px solid #FE0037');

This code forces the browser to select the element, change its CSS, select the element
a second time (wasting processor time), and apply CSS again. Using the chaining
method, the browser only needs to select the element a single time and then run the
CSS function twice; selecting the element once is faster and more efficient.

Reading, Setting, and Removing HTML Attributes
Since changing classes and CSS properties using JavaScript are such common tasks,
jQuery has built-in functions for them. But the addClass() and css() functions
are really just shortcuts for changing the HTML class and style attributes. jQuery
includes general-purpose functions for handling HTML attributes—the attr() and
removeAttr() functions.

The attr() function lets you read a specified HTML attribute from a tag. For exam-
ple, to determine the current graphic file a particular points to, you pass the
string ‘src’ (for the tag’s src property) to the function:

var imageFile = $('#banner img').attr('src');

147chapter 4: introducing jquery

Acting on Each
Element in a

Selection
The attr() function returns the attributes value as it’s set in the HTML. This code
returns the src property for the first tag inside another tag with an ID of
banner, so the variable imageFile would contain the path set in the page’s HTML: for
instance, ‘images/banner.png’ or ‘http://www.thesite.com/images/banner.png’.

Note: When passing an attribute name to the .attr() function, you don’t need to worry about the case of
the attribute name—href, HREF, or even HrEf will work.

If you pass a second argument to the attr() function, you can set the tag’s attribute.
For example, to swap in a different image, you can change an tag’s src prop-
erty like this:

$('#banner img').attr('src','images/newImage.png');

If you want to completely remove an attribute from a tag, use the removeAttr() func-
tion. For example, this code removes the bgColor property from the <body> tag:

$('body').removeAttr('bgColor');

Acting on Each Element in a Selection
As discussed on page 136, one of the unique qualities of jQuery is that most of its
functions automatically loop through each item in a jQuery selection. For example,
to make every on a page fade out, you only need one line of JavaScript code:

$('img').fadeOut();

The .fadeOut() function causes an element to disappear slowly, and when attached
to a jQuery selection containing multiple elements, the function loops through the
selection and fades out each element. There are plenty of times when you’ll want to
loop through a selection of elements and perform a series of actions on each element.
jQuery provides the .each() function for just this purpose.

For example, say you want to list of all of the external links on your page in a bibliog-
raphy box at the bottom of the page, perhaps titled “Other Sites Mentioned in This
Article.” (OK, you may not ever want to do that, but just play along.) Anyway, you
can create that box by:

1. Retrieving all links that point outside your site.
2. Getting the HREF attribute of each link (the URL).
3. Adding that URL to the other list of links in the bibliography box.

jQuery doesn’t have a built-in function that performs these exact steps, but you can
use the each() function to do it yourself. It’s just a jQuery function, so you slap it on
at the end of a selection of jQuery elements like this:

$('selector').each();

148 javascript & jquery: the missing manual

Acting on Each
Element in a
Selection

Anonymous	Functions
To use the each() function, you pass a special kind of argument to it—an anonymous
function. The anonymous function is simply a function containing the steps that
you wish to perform on each selected element. It’s called anonymous because, unlike
the functions you learned to create on page 100, you don’t give it a name. Here’s an
anonymous function’s basic structure:

function() {
 //code goes here
}

Because there’s no name, you don’t have a way to call the function. For example,
with a regular named function, you use its name with a set of parentheses like this:
calculateSalesTax();. Instead, you use the anonymous function as an argument that
you pass to another function (strange and confusing, but true!). Here’s how you in-
corporate an anonymous function as part of the each() function:

$('selector').each(function() {
 // code goes in here
});

Figure 4-6 diagrams the different parts of this construction. The last line is particu-
larly confusing, since it includes three different symbols that close up three parts of
the overall structure. The } marks the end of the function (that’s also the end of the
argument passed to the each() function); the) is the last part of the each() function;
and ; indicates the end of a JavaScript statement. In other words, the JavaScript in-
terpreter treats all of this code as a single instruction.

Figure 4-6:
jQuery’s each() function lets you loop
through a selection of page elements
and perform a series of tasks on
each element. The key to using the
function is understanding anonymous
functions.

End of statement

End of each() function

End of anonymous function

Anonymous function

Beginning of
anonymous function

Start of each() function

$('selector').each(function() {
 // your code goes in here
}) ;

Now that the outer structure’s in place, it’s time to put something inside the anony-
mous function: all of the stuff you want to happen to each element in a selection.
The each() function works like a loop—meaning the instructions inside the anony-
mous function will run once for each element you’ve retrieved. For example, say you
have 50 images on a page and add the following JavaScript code to one of the page’s
scripts:

$('img').each(function() {
 alert('I found an image');
});

149chapter 4: introducing jquery

Acting on Each
Element in a

Selection

Fifty alert dialog boxes with the message “I found an image” would appear. (That’d
be really annoying, so don’t try this at home.)

Note: This may look somewhat familiar. As you saw on page 123, when you add jQuery to a page, you
should use the document.ready() function to make sure a page’s HTML has loaded before the browser
executes any of the JavaScript programming. That function also accepts an anonymous function as an
argument:

$(document).ready(function() {

 // programming goes inside this

 // anonymous function

});

this	and	$(this)
When using the each() function, you’ll naturally want to access or set attributes of
each element—for example, to find the URL for each external link. To access the
current element through each loop, you use a special keyword called this. The this
keyword refers to whatever element is calling the anonymous function. So the first
time through the loop, this refers to the first element in the jQuery selection, while
the second time through the loop, this refers to the second element.

The way jQuery works, this refers to a traditional DOM element, so you can access
traditional DOM properties. But, as you’ve read in this chapter, the special jQuery
selection lets you tap into all of the wonderful jQuery functions. So to convert this to
its jQuery equivalent, you write $(this).

At this point, you’re probably thinking that all of this stuff is some kind of cruel joke
intended to make your head swell. It’s not a joke, but it sure is confusing. To help
make clear how to use $(this), take another look at the task described at the begin-
ning of this section—creating a list of external links in a bibliography box at the
bottom of a page.

Assume that the page’s HTML already has a <div> tag ready for the external links.
For example:

<div id="bibliography">
<h3>web pages referenced in this article</h3>
<ul id="bibList">

</div>

150 javascript & jquery: the missing manual

Automatic Pull
Quotes

The first step is to get a list of all links pointing outside your site. You can do so using
an attribute selector (page 133):

$('a[href^="http://"]')

Now to loop through each link, we add the each() function:
$('a[href^="http://"]').each()

Then add an anonymous function:
$('a[href^="http://"]').each(function() {

});

The first step in the anonymous function is to retrieve the URL for the link. Since
each link has a different URL, you must access the current element each time through
the loop. The $(this) keyword lets you do just that:

$('a[href^=http://]').each(function() {
 var extLink = $(this).attr('href');
});

The code in the middle, bolded line does several things: First, it creates a new vari-
able (extLink) and stores the value of the current element’s href property. Each time
through the loop, $(this) refers to a different link on the page, so each time through
the loop, the extLink variable changes.

After that, it’s just a matter of appending a new list item to the tag (see the
HTML on page 149), like this:

$('a[href^=http://]').each(function() {
 var extLink = $(this).attr('href');
 $('#bibList').append('' + extLink + '');
});

You’ll use the $(this) keyword almost every time you use the each() function, so in
a matter of time, $(this) will become second nature to you. To help you practice this
concept, you’ll try it out in a tutorial.

Note: The example script used in this section is a good way to illustrate the use of the $(this) keyword,
but it probably isn’t the best way to accomplish the task of writing a list of external links to a page. First, if
there are no links, the <div> tag (which was hardcoded into the page’s HTML) will still appear, but it’ll be
empty. In addition, if someone visits the page without JavaScript turned on, he won’t see the links, but will
see the empty box. A better approach is to use JavaScript to create the enclosing <div> tag as well. You
can find an example of that in the file bibliography.html accompanying the tutorials for this chapter.

Automatic Pull Quotes
In the final tutorial for this chapter, you’ll create a script that makes it very easy to
add pull quotes to a page (like the one pictured in Figure 4-7). A pull quote is a box
containing an interesting quote from the main text of a page. Newspapers, magazines,
and websites all use these boxes to grab readers’ attention and emphasize an impor-
tant or interesting point. But adding pull quotes manually requires duplicating text
from the page and placing it inside a <div> tag, tag, or some other container.

151chapter 4: introducing jquery

Automatic Pull
Quotes

Creating all that HTML takes time and adds extra HTML and duplicate text to the
finished page. Fortunately, with JavaScript, you can quickly add any number of pull
quotes to a page, adding just a small amount of HTML.

Figure 4-7:
Adding pull quotes
manually to the
HTML of a page is a
pain, especially when
you can just use
JavaScript to auto-
mate the process.

Overview
The script you’re about to create will do several things:

1. Locate every tag containing a special class named pq (for pull quote).
The only work you have to do to the HTML of your page is to add tags
around any text you wish to turn into a pull quote. For example, suppose there’s
a paragraph of text on a page and you want to highlight a few words from that
paragraph in pull quote box. Just wrap that text in the tag like this:
...and that's how I discovered the Loch Ness monster.

152 javascript & jquery: the missing manual

Automatic Pull
Quotes

2. Duplicate each tag.
Each pull quote box is essentially another span tag with the same text inside it,
so you can use JavaScript to just duplicate the current tag.

3. Remove the pq class from the duplicate and add a new class pullquote.
The formatting magic—the box, larger text, border, and background color—
that makes up each pull quote box isn’t JavaScript’s doing. The page’s style sheet
contains a CSS class selector, .pullquote, that does all of that. So by simply using
JavaScript to change the duplicate tags’ class name, you completely change the
look of the new tags.

4. Add the duplicate tag to the page.
Finally, you add the duplicate tag to the page. (Step 2 just makes a copy
of the tag in the web browser’s memory, but doesn’t actually add that tag to the
page yet. This gives you the opportunity to further manipulate the duplicated
tag before displaying it for the person viewing the page.)

Programming
Now that you have an idea of what you’re trying to accomplish with this script, it’s
time to open a text editor and make it happen.

Note: See the note on page 29 for information on how to download the tutorial files.

1. In a text editor, open the file pull-quote.html in the chapter04 folder.
You’ll start at the beginning by adding a link to the jQuery file.

2. Click in the empty line just above the closing </head> tag and type:
<script src="../_js/jquery-1.6.3.min.js"><script>

This loads the jQuery file from the site. Note that the name of the folder con-
taining the jQuery file is _js (don’t forget the underscore character at the begin-
ning). Next, you’ll add a set of <script> tags for your programming.

3. Press Enter (or Return) to create a new line below the jQuery code and add
the code listed in bold below:
1 <script src="../_js/jquery-1.6.3.min.js"><script>
2 <script>
3
4 </script>

Note: The line numbers to the left of each line of code are just for your reference. Don’t actually type
them as part of the script on the web page.

Now add the document.ready() function.

153chapter 4: introducing jquery

Automatic Pull
Quotes

4. Click on the empty line between the <script> tags and add the code in bold:
1 <script src="../_js/jquery-1.6.3.min.js"><script>
2 <script>
3 $(document).ready(function() {
4
5 }); // end ready
6 </script>

The JavaScript comment // end ready is particularly helpful as your programs
get longer and more complicated. On a long program, you’ll end up with lots of
}); scattered throughout, each marking the end of an anonymous function and
a function call. Putting a comment that identifies what the }); matches makes it
much easier to later return to your code and understand what is going on.
Steps 1–4 cover the basic setup for any program you’ll write using jQuery, so
make sure you understand what it does. Next, you’ll get into the heart of your
program by selecting the tags containing the text that should appear in
the pullquote boxes.

5. Add the bolded code on line 4:
1 <script src="../_js/jquery-1.6.3.min.js"><script>
2 <script>
3 $(document).ready(function() {
4 $('span.pq')
5 }); // end ready
6 </script>

The $(‘span.pq’) is a jQuery selector that locates every tag with a class of
pq applied to it. Next you’ll add the code needed to loop through each of these
 tags and do something to them.

6. Add the bolded code on lines 4 and 6:
1 <script src="../_js/jquery-1.6.3.min.js"><script>
2 <script>
3 $(document).ready(function() {
4 $('span.pq').each(function() {
5
6 }); // end each
7 }); // end ready
8 </script>

As discussed on page 147, .each() is a jQuery function that lets you loop through
a selection of elements. The function takes one argument, which is an anony-
mous function.
Next you’ll start to build the function that will apply to each matching
tag on this page: Get started by creating a copy of the .

7. Add the code listed in bold on line 5 below to the script:
1 <script src="../_js/jquery-1.6.2.min.js"></script>
2 <script >
3 $(document).ready(function() {
4 $('span.pq').each(function() {
5 var quote=$(this).clone();

154 javascript & jquery: the missing manual

Automatic Pull
Quotes

6 }); // end each
7 }); // end ready
8 </script>

This function starts by creating a new variable named quote, which contains
a “clone” (just a copy) of the current (see page 149 if you forgot what
$(this) means). The jQuery .clone() function duplicates the current element, in-
cluding all of the HTML within the element. In this case, it makes a copy of the
 tag, including the text inside the that will appear in the pull
quote box.
Cloning an element copies everything, including any attributes applied to it. In
this instance, the original had a class named pq. You’ll remove that class
from the copy.

8. Add the two lines of code listed in bold on lines 6 and 7 below to the script:
 1 <script src="../_js/jquery-1.6.3.min.js"></script>
 2 <script>
 3 $(document).ready(function() {
 4 $('span.pq').each(function() {
 5 var quote=$(this).clone();
 6 quote.removeClass('pq');
 7 quote.addClass('pullquote');
 8 }); // end each
 9 }); // end ready
10 </script>

As discussed on page 142, the removeClass() function removes a class name
from a tag, while the .addClass() function adds a class name to a tag. In this case,
we’re replacing the class name on the copy, so you can use a CSS class named
.pullquote to format the as a pull quote box.
Finally, you’ll add the to the page.

9. Add the bolded line of code (line 8) to the script:
 1 <script src="../_js/jquery-1.6.3.min.js"></script>
 2 <script>
 3 $(document).ready(function() {
 4 $('span.pq').each(function() {
 5 var quote=$(this).clone();
 6 quote.removeClass('pq');
 7 quote.addClass('pullquote');
 8 $(this).before(quote);
 9 }); // end each
10 }); // end ready
11 </script>

This line is the final piece of the function—up until this line, you’ve just been
manipulating a copy of the in the web browser’s memory. No one view-
ing the page would see it until the copy is actually added to the DOM.
In this case, you’re inserting the copy of the tag, just before the one in
your HTML. In essence, the page will end up with HTML sort of like this:
...and that's how I discovered the Loch Ness monster.
 ...and that's how I discovered the Loch Ness
monster.

155chapter 4: introducing jquery

Automatic Pull
Quotes

Although the text looks like it will appear duplicated side by side, the CSS
formatting makes the pull quote box float to the right edge of the page.

Note: To achieve the visual effect of a pull quote box, the page has a CSS style that uses the CSS float
property. The box is moved to the right edge of the paragraph in which the text appears, and the other
text in the paragraph wraps around it. If you’re unfamiliar with this technique, you can learn about the CSS
float property at http://css.maxdesign.com.au/floatutorial/. If you wish to examine the .pullquote style,
just look in the head of the tutorial file. That style and all its properties are listed there.

At this point, all of the JavaScript is complete. However, you won’t see any pull
quote boxes until you massage the HTML a bit.

10. Find the first <p> tag in the page’s HTML. Locate a sentence and wrap <span
class=“pq”> around it. For example:
Nullam ut nibh sed orci tempor rutrum.

You can repeat this process to add pull quotes to other paragraphs as well.
11. Save the file and preview it in a web browser.

The final result should look something like Figure 4-7. If you don’t see a pull
quote box, make sure you added the tag in step 10 correctly. Also, check
out the tips on page 34 for fixing a malfunctioning program. You can find a
completed version of this tutorial in the file complete_pull-quote.html.

157

chapter
5

Action/Reaction: Making
Pages Come Alive with
Events

When you hear people talk about JavaScript, you usually hear the word
“interactive” somewhere in the conversation: “JavaScript lets you make
interactive web pages.” What they’re really saying is that JavaScript lets

your web pages react to something a visitor does: moving a mouse over a navigation
button produces a menu of links; selecting a radio button reveals a new set of form
options; clicking a small photo makes the page darken and a larger version of the
photo pop onto the screen.

All the different visitor actions that a web page can respond to are called events.
JavaScript is an event-driven language: Without events, your web pages wouldn’t be
able to respond to visitors or do anything really interesting. It’s like your desktop
computer. Once you start it up in the morning, it doesn’t do you much good until
you start opening programs, clicking files, making menu selections, and moving
your mouse around the screen.

What Are Events?
Web browsers are programmed to recognize basic actions like the page loading,
someone moving a mouse, typing a key, or resizing the browser window. Each of
the things that happens to a web page is an event. To make your web page interac-
tive, you write programs that respond to events. In this way, you can make a <div>
tag appear or disappear when a visitor clicks the mouse, a new image appear when
she mouses over a link, or check the contents of a text field when she clicks a form’s
Submit button.

158 javascript & jquery: the missing manual

What Are Events?

An event represents the precise moment when something happens. For example,
when you click a mouse, the precise moment you release the mouse button, the web
browser signals that a click event has just occurred. The moment that the web browser
indicates that an event has happened is when the event fires, as programmers put it.

Web browsers actually fire several events whenever you click the mouse button.
First, as soon as you press the mouse button, the mousedown event fires; then, when
you let go of the button, the mouseup event fires; and finally, the click event fires
(see Figure 5-1).

Note: Understanding when and how these events fire can be tricky. To let you test out different event
types, this chapter includes a demo web page with the tutorial files. Open events.html (in the testbed
folder) in a web browser. Then move the mouse, click, and type to see some of the many different events
that constantly occur on a web page (see Figure 5-1).

Figure 5-1:
While you may
not be aware of it,
web browsers are
constantly firing off
events whenever you
type, mouse around,
or click. The events
.html file (included
with the tutorial files
in the testbed folder)
shows you many of
these events in action.
For example, click-
ing into a text field
(circled) starts the
mousedown, focus,
mouseup, and click
events.

159chapter 5: action/reaction: making pages come alive with events

What Are Events?

Mouse	Events
Ever since Steve Jobs introduced the Macintosh in 1984, the mouse has been a criti-
cal device for all personal computers. Folks use it to open applications, drag files into
folders, select items from menus, and even to draw. Naturally, web browsers provide
lots of ways of tracking how a visitor uses a mouse to interact with a web page:

• click. The click event fires after you click and release the mouse button. You’ll
commonly assign a click event to a link: For example, a link on a thumbnail
image can display a larger version of that image when clicked. However, you’re
not limited to just links. You can also make any tag on a page respond to an
event—even just clicking anywhere on the page.

Note: The click event can also be triggered on links via the keyboard. If you tab to a link, then press the
Enter (Return) key, the click event fires.

• dblclick. When you press and release the mouse button twice, a double-click
(dblclick) event fires. It’s the same action you use to open a folder or file on your
desktop. Double-clicking a web page isn’t a usual web-surfer action, so if you
use this event, you should make clear to visitors where they can double-click
and what will happen after they do. Also note that a double-click event is the
same thing as two click events, so don’t assign click and double-click events to
the same tag. Otherwise, the function for the click will run twice before the
double-click function runs.

• mousedown. The mousedown event is the first half of a click—the moment when
you click the button before releasing it. This event is handy for dragging elements
around a page. You can let visitors drag items around your web page just like they
drag icons around their desktop—by clicking on them (without releasing the but-
ton) and moving them, and then releasing the button to drop them.

• mouseup. The mouseup event is the second half of a click—the moment when
you release the button. This event is handy for responding to the moment
when you drop an item that has been dragged.

• mouseover. When you move your mouse over an element on a page, a
mouseover event fires. You can assign an event handler to a navigation button
using this event and have a submenu pop up when a visitor mouses over the
button. (If you’re used to the CSS :hover pseudo-class, then you know how this
event works.)

• mouseout. Moving a mouse off an element triggers the mouseout event. You can
use this event to signal when a visitor has moved her mouse off the page, or to
hide a pop-up menu when the mouse travels outside the menu.

• mousemove. Logically enough, the mousemove event fires when the mouse
moves—which means this event fires all of the time. You use this event to track
the current position of the cursor on the screen. In addition, you can assign this
event to a particular tag on the page—a <div>, for example—and respond only
to movements within that tag.

160 javascript & jquery: the missing manual

What Are Events?

Note: Some web browsers, like Internet Explorer, support many events (http://msdn2.microsoft.com/
en-us/library/ms533051(VS.85).aspx), but most browsers share just a handful of events.

Document/Window	Events
The browser window itself understands a handful of events that fire from when the
page loads to when the visitor leaves the page:

• load. The load event fires when the web browser finishes downloading all of a
web page’s files: the HTML file itself, plus any linked images, Flash movies, and
external CSS and JavaScript files. Web designers have traditionally used this
event to start any JavaScript program that manipulated the web page. However,
loading a web page and all its files can take a long time if there are a lot of graph-
ics or other large linked files. In some cases, this meant the JavaScript didn’t run
for quite some time after the page was displayed in the browser. Fortunately,
jQuery offers a much more responsive replacement for the load event, as de-
scribed on page 169.

• resize. When you resize your browser window by clicking the maximize but-
ton, or dragging the browser’s resize handle, the browser triggers a resize event.
Some designers use this event to change the layout of the page when a visitor
changes the size of his browser. For example, after a visitor resizes his browser
window, you can check the window’s width—if the window is really wide, you
could change the design to add more columns of content to fit the space.

Note: Internet Explorer, Opera, and Safari fire multiple resize events as you resize the window, whereas
Firefox only fires the resize event a single time after you’ve let go of the resize handle.

• scroll. The scroll event is triggered whenever you drag the scroll bar, or use the
keyboard (for example, the up, down, home, end, and similar keys) or mouse
scroll wheel to scroll a web page. If the page doesn’t have scrollbars, no scroll
event is ever triggered. Some programmers use this event to help figure out
where elements (after a page has scrolled) appear on the screen.

• unload. When you click a link to go to another page, close a browser tab, or
close a browser window, a web browser fires an unload event. It’s like the last
gasp for your JavaScript program and gives you an opportunity to complete one
last action before the visitor moves on from your page. Nefarious programmers
have used this event to make it very difficult to ever leave a page. Each time a
visitor tries to close the page, a new window appears and the page returns. But
you can also use this event for good: For example, a program can warn a visitor
about a form he’s started to fill out but hasn’t submitted, or the program could
send form data to the web server to save the data before the visitor exits the page.

161chapter 5: action/reaction: making pages come alive with events

What Are Events?

Form	Events
In the pre-JavaScript days, people interacted with websites mainly via forms created
with HTML. Entering information into a form field was really the only way for visi-
tors to provide input to a website. Because forms are still such an important part of
the web, you’ll find plenty of form events to play with.

• submit. Whenever a visitor submits a form, the submit event fires. A form
might be submitted by clicking the Submit button, or simply by hitting the
Enter (Return) key while the cursor is in a text field. You’ll most frequently
use the submit event with form validation—to make sure all required fields are
correctly filled out before the data is sent to the web server. You’ll learn how to
validate forms on page 278.

• reset. Although not as common as they used to be, a Reset button lets you undo
any changes you’ve made to a form. It returns a form to the state it was when the
page was loaded. You can run a script when the visitor tries to reset the form by
using the reset event. For example, if the visitor has made some changes to the
form, you might want to pop up a dialog box that asks “Are you sure you want
to delete your changes?” The dialog box could give the visitor a chance to click a
“No” button and prevent the process of resetting (erasing) the form.

• change. Many form fields fire a change event when their status changes: for
instance, when someone clicks a radio button, or makes a selection from a drop-
down menu. You can use this event to immediately check the selection made in
a menu, or which radio button was selected.

• focus. When you tab or click into a text field, it gives the field focus. In other
words, the browser’s attention is now focused on that page element. Likewise,
selecting a radio button, or clicking a checkbox, gives those elements focus. You
can respond to the focus event using JavaScript. For example, you could add a
helpful instruction inside a text field—“Type your full name.” When a visitor
clicks in the field (giving it focus), you can erase these instructions, so he has an
empty field he can fill out.

• blur. The blur event is the opposite of focus. It’s triggered when you exit a cur-
rently focused field, by either tabbing or clicking outside the field. The blur
event is another useful time for form validation. For example, when someone
types her email address in a text field, then tabs to the next field, you could im-
mediately check what she’s entered to make sure it’s a valid email address.

Note: Focus and blur events also apply to links on a page. When you tab to a link, a focus event fires;
when you tab (or click) off the link, the blur event fires.

162 javascript & jquery: the missing manual

Using Events the
jQuery Way

Keyboard	Events
Web browsers also track when visitors use their keyboards, so you can assign com-
mands to keys or let your visitors control a script by pressing various keys. For
example, pressing the space bar could start and stop a JavaScript animation.

Unfortunately, the different browsers handle keyboard events differently, even mak-
ing it hard to tell which letter was entered! (You’ll find one technique for identifying
which letter was typed on a keyboard in the Tip on page 175.)

• keypress. The moment you press a key, the keypress event fires. You don’t have
to let go of the key, either. In fact, the keypress event continues to fire, over and
over again, as long as you hold the key down.

• keydown. The keydown event is like the keypress event—it’s fired when you
press a key. Actually, it’s fired right before the keypress event. In Firefox and
Opera, the keydown event only fires once. In Internet Explorer and Safari, the
keydown event behaves just like the keypress event—it fires over and over as
long as the key is pressed.

• keyup. Finally, the keyup event is triggered when you release a key.

Using Events the jQuery Way
Traditionally, programming with events has been tricky. For a long time, Internet
Explorer had a completely different way of handling events than other browsers, re-
quiring two sets of code (one for IE and one for all other browsers) to get your code
to work. Fortunately, IE9 now uses the same method for handling events as other
browsers, so programming is a lot easier. However, there are still a lot of people using
IE8 and earlier, so a good solution that makes programming with events easy and
cross-browser compatible is needed. Fortunately, you have jQuery.

As you learned in the last chapter, JavaScript libraries like jQuery solve a lot of the
problems with JavaScript programming—including pesky browser incompatibilities.
In addition, libraries often simplify basic JavaScript-related tasks. jQuery makes as-
signing events and event helpers (the functions that deal with events) a breeze.

As you saw on page 126, jQuery programming involves (a) selecting a page element
and then (b) doing something with that element. In fact, since events are so integral
to JavaScript programming, it’s better to think of jQuery programming as a three-
step process:

1. Select one or more elements.
The last chapter explained how jQuery lets you use CSS selectors to choose the
parts of the page you want to manipulate. When assigning events, you want to
select the elements that the visitor will interact with. For example, what will
a visitor click—a link, a table cell, an image? If you’re assigning a mouseover
event, what page element does a visitor mouse over to make the action happen?

163chapter 5: action/reaction: making pages come alive with events

Using Events the
jQuery Way

2. Assign an event.
In jQuery, most DOM events have an equivalent jQuery function. So to assign
an event to an element, you just add a period, the event name, and a set of pa-
rentheses. So, for example, if you want to add a mouseover event to every link
on a page, you can do this:
$('a').mouseover();

To add a click event to an element with an ID of menu, you’d write this:
$('#menu').click();

You can use any of the event names listed on pages 159–162 (and a couple of
jQuery-only events discussed on page 171).
After adding the event, you still have some work to do. In order for something
to happen when the event fires, you must provide a function for the event.

3. Pass a function to the event.
Finally, you need to define what happens when the event fires. To do so, you
pass a function to the event. The function contains the commands that will run
when the event fires: for example, making a hidden <div> tag visible or high-
lighting a moused-over element.
You can pass a previously defined function’s name like this:
$('#start').click(startSlideShow);

When you assign a function to an event, you omit the () that you normally add
to the end of a function’s name to call it. In other words, the following won’t work:
$('#start').click(startSlideShow())

However, the most common way to add a function to an event is to pass an
anonymous function to the event. You read about anonymous functions on page
148—they’re basically a function without a name. The basic structure of an
anonymous function looks like this:
function() {
// your code here
}

The basic structure for using an anonymous function with an event is pictured
in Figure 5-2.

Note: To learn more about how to work with jQuery and events, visit http://api.jquery.com/category/
events/.

http://api.jquery.com/category/events/
http://api.jquery.com/category/events/

164 javascript & jquery: the missing manual

Using Events the
jQuery Way

Figure 5-2:
In jQuery, an event works like a function,
so you can pass an argument to the event.
You can think of an anonymous function,
then, as an argument—like a single piece of
data that’s passed to a function. If you think
of it that way, it’s easier to see how all of
the little bits of punctuation fit together. For
example, in the last line, the } marks the end
of the function (and the end of the argument
passed to the mouseover function); the) is
the end of the mouseover() function; and the
semicolon is the end of the entire statement
that began with the selector $(‘a’).

End of statement

End of mouseover() function

End of anonymous function

Anonymous function

Beginning of
anonymous function

Selection Event

$('a').mouseover(function() {
 // your code goes in here
}) ;

Here’s a simple example. Assume you have a web page with a link that has an ID
of menu applied to it. When a visitor moves his mouse over that link, you want a
hidden list of additional links to appear—assume that the list of links has an ID of
submenu. So what you want to do is add a mouseover event to the menu, and then
call a function that shows the submenu. The process breaks down into four steps:

1. Select the menu:
$('#menu')

2. Attach the event:
$('#menu').mouseover();

3. Add an anonymous function:
$('#menu').mouseover(function() {

}); // end mouseover

You’ll encounter lots of collections of closing brace, closing parenthesis, and
semicolons—});—which frequently mark the end of an anonymous function
inside a function call. Since you see them everywhere, it’s always a good idea to
add a JavaScript comment—in this example, // end mouseover—to specify what
that trio of punctuation means.

4. Add the necessary actions (in this case, it’s showing the submenu):
$('#menu').mouseover(function() {
 $('#submenu').show();
}); // end mouseover

A lot of people find the crazy nest of punctuation involved with anonymous
functions very confusing (that last }); is always a doozy). And it is confusing,
but the best way to get used to the strange world of JavaScript is through lots of
practice, so the following hands-on tutorial should help reinforce the ideas just
presented.

Note: The show() function is discussed in the next chapter on page 187.

165chapter 5: action/reaction: making pages come alive with events

Tutorial: Introducing
Events

Tutorial: Introducing Events
This tutorial gives you a quick introduction to using events. You’ll make the page
react to several different types of events so you can get a handle on how jQuery
events work and how to use them.

Note: See the note on page 29 for information on how to download the tutorial files.

1. In a text editor, open the file events_intro.html in the chapter05 folder.
You’ll start at the beginning by adding a link to the jQuery file.

2. Click in the empty line just above the closing </head> tag and type:
<script src="../_js/jquery-1.6.3.min.js"></script>

This line loads the jQuery file from the site. Note that the name of the folder
containing the jQuery file is _js (don’t forget the underscore character at the
beginning). Next, you’ll add a set of <script> tags for your programming.

3. Press Enter (or Return) to create a new line below the jQuery code and add
the code listed in bold below:
<script src="../_js/jquery-1.6.3.min.js"></script>
<script>

</script>

Now add the document.ready() function.
4. Click in the empty line between the <script> tags and add the code in bold:

<script src="../_js/jquery-1.6.3.min.js"></script>
<script>
$(document).ready(function() {

}); // end ready
</script>

Don’t forget the JavaScript comment after the });. Even though adding com-
ments requires a little extra typing, they’ll be very helpful in identifying the
different parts of a program. At this point, you’ve completed the steps you’ll
follow whenever you use jQuery on a page.
Next, it’s time to add an event. Your first goal will be simple: have an alert box
appear when a visitor clicks anywhere on the page twice. To begin, you need to
select the element (the page in this case) that you wish to add the event to.

5. Click in the empty line inside the .ready() function and add the bolded code
below:
<script src="../_js/jquery-1.6.3.min.js"></script>
<script>
$(document).ready(function() {
 $('html')
}); // end ready
</script>

166 javascript & jquery: the missing manual

Tutorial: Introducing
Events

The $(‘html’) selects the HTML element; basically, the entire browser window.
Next, you’ll add an event.

6. Type .dblclick(); after the jQuery selector so your code looks like this:
<script src="../_js/jquery-1.6.3.min.js"></script>
<script>
$(document).ready(function() {
 $('html').dblclick(); // end double click
}); // end ready
</script>

.dblclick() is a jQuery function that gets the browser ready to make something
happen when a visitor double-clicks on the page. The only thing missing is the
“make something happen” part, which requires passing an anonymous function
as an argument to the dblclick() function (if you need a recap on how functions
work and what “passing an argument” means, turn to page 102).

7. Add an anonymous function by typing the code in bold below:
<script src="../_js/jquery-1.6.3.min.js"></script>
<script>
$(document).ready(function() {
 $('html').dblclick(function() {

 }); // end double click
}); // end ready
</script>

Don’t worry, the rest of this book won’t crawl through every tutorial at this gla-
cial pace; but, it’s important for you to understand what each piece of the code is
doing. The function() { } is just the outer shell; it doesn’t do anything until you
add programming inside the { and }: That’s the next step.

8. Finally, add an alert statement:
<script src="../_js/jquery-1.6.3.min.js"></script>
<script>
$(document).ready(function() {
 $('html').dblclick(function() {
 alert('ouch');
 }); // end double click
}); // end ready
</script>

If you preview the page in a web browser and double-click anywhere on the
page, a JavaScript alert box with the word “ouch” should appear. If it doesn’t,
double-check your typing to make sure you didn’t miss anything.

Note: After that long build-up, having “ouch” appear on the screen probably feels like a let-down. But keep
in mind that the alert() part of this script is unimportant—it’s all the other code you typed that demonstrates
the fundamentals of how to use events with jQuery. As you learn more about programming and jQuery,
you can easily replace the alert box with a series of actions that (when a visitor double-clicks the page)
moves an element across the screen, displays an interactive photo slideshow, or starts a car-racing game.

167chapter 5: action/reaction: making pages come alive with events

Tutorial: Introducing
Events

Now that you’ve got the basics, you’ll try out a few other events.
9. Add the code in bold below so your script looks like this:

<script src="../_js/jquery-1.6.3.min.js"></script>
<script>
$(document).ready(function() {
 $('html').dblclick(function() {
 alert('ouch');
 }); // end double click
 $('a').mouseover(function() {

 }); // end mouseover
}); // end ready
</script>

This code selects all links on a page (that’s the $(‘a’) part), then adds an anony-
mous function to the mouseover event. In other words, when someone mouses
over any link on the page, something is going to happen.

10. Add two JavaScript statements to the anonymous function you added in the
last step:
<script src="../_js/jquery-1.6.3.min.js"></script>
<script>
$(document).ready(function() {
 $('html').dblclick(function() {
 alert('ouch');
 }); // end double click
 $('a').mouseover(function() {
 var message = "<p>You moused over a link</p>";
 $('.main').append(message);
 }); // end mouseover
}); // end ready
</script>

The first line here—var message = “<p>You moused over a link</p>”;—creates
a new variable named message and stores a string in it. The string is an HTML
paragraph tag with some text. The next line selects an element on the page with
a class name of main (that’s the $(‘.main’)) and then appends (or adds to the end
of that element) the contents of the message variable. The page contains a <div>
tag with the class of main, so this code simply adds “You moused over a link” to
the end of that div each time a visitor mouses over a link on the page. (See page
139 for a recap of jQuery’s append() function.)

11. Save the page, preview it in a browser, and mouse over any link on the page.
Each time you mouse over a link, a paragraph is added to the page (see Figure
5-3). Now you’ll add one last bit of programming: when a visitor clicks on the
form button on the page, the browser will change the text that appears on that
button.

12. Lastly, add the code in bold below so that your finished script looks like this:
<script src="../_js/jquery-1.6.3.min.js"></script>
<script>
$(document).ready(function() {
 $('html').dblclick(function() {

168 javascript & jquery: the missing manual

Tutorial: Introducing
Events

 alert('ouch');
 }); // end double click
 $('a').mouseover(function() {
 var message = "<p>You moused over a link</p>";
 $('.main').append(message);
 }); // end mouseover
 $('#button').click(function() {
 $(this).val("Stop that!");
 }); // end click
}); // end ready
</script>

You should understand the basics here: $(‘#button’) selects an element with the
ID button (the form button in this case), and adds a click event to it, so when
someone clicks the button, something happens. In this example, the words
“Stop that!” appear on the button. Here’s how the code inside the anonymous
function makes that happen:
On page 149, you saw how to use $(this) inside of a loop in jQuery. It’s the same
idea inside of an event: $(this) refers to the element that is responding to the
event—the element you select and attach the event to. In this case, this is the
form button. (You’ll learn more about the jQuery val() function on page 261,
but basically you use it to read the value from or change the value of a form ele-
ment. In this example, passing the string “Stop that!” to the val() function sets
the button’s value to “Stop that!”)

13. Save the page, preview it in a browser, and click the form button.
The button’s text should instantly change (see Figure 5-3). For an added exer-
cise, add the programming to make the text field’s background color change to
red when a visitor clicks or tabs into it. Here’s a hint: You need to (a) select the
text field; (b) use the focus() event (page 264); (c) use $(this) (as in step 12) to
address the text field inside the anonymous function; and (d) use the .css() func-
tion (page 143) to change the background color of the text field. You can find
the answer (and a complete version of the page) in the complete_events_intro
.html file in the chapter05 folder.

169chapter 5: action/reaction: making pages come alive with events

More jQuery Event
Concepts

Figure 5-3:
jQuery makes it easy
for your web pages
to respond to user
interaction, such as
opening an alert box
when the page is
clicked twice, adding
text to the page in
response to mousing
over a link, or clicking
a form button.

More jQuery Event Concepts
Because events are a critical ingredient for adding interactivity to a web page, jQuery
includes some special jQuery-only functions that can make your programming
easier and your pages more responsive.

Waiting	for	the	HTML	to	Load
When a page loads, a web browser tries immediately to run any scripts it encounters.
So scripts in the head of a page might run before the page fully loads—you saw this
in the Moon Quiz tutorial on page 108, where the page was blank until the script
asking the questions finished. Unfortunately, this phenomenon often causes prob-
lems. Since a lot of JavaScript programming involves manipulating the contents of
a web page—displaying a pop-up message when a particular link is clicked, hiding
specific page elements, adding stripes to the rows of a table, and so on—you’ll end
up with JavaScript errors if your program tries to manipulate elements of a page that
haven’t yet been loaded and displayed by the browser.

170 javascript & jquery: the missing manual

More jQuery Event
Concepts

The most common way to deal with that problem has been to use the load event to
wait until a page is fully downloaded and displayed before executing any JavaScript.
Unfortunately, waiting until a page fully loads before running JavaScript code can
create some pretty strange results. The load event only fires after all of a web page’s
files have downloaded—meaning all images, movies, external style sheets, and so
on. As a result, on a page with lots of graphics, the visitor might actually be staring at
a page for several seconds while the graphics load before any JavaScript runs. If the
JavaScript makes a lot of changes to the page—for example, styles table rows, hides
currently visible menus, or even controls the layout of the page—visitors will suddenly
see the page change before their very eyes.

Fortunately, jQuery comes to the rescue. Instead of relying on the load event to trig-
ger a JavaScript program, jQuery has a special function named ready() that waits just
until the HTML has been loaded into the browser and then runs the page’s scripts.
That way, the JavaScript can immediately manipulate a web page without having to
wait for slow-loading images or movies. (That’s actually a complicated and useful
feat—another reason to use a JavaScript library.)

You’ve already used the ready() function in a few of the tutorials in this book. The
basic structure of the function goes like this:

$(document).ready(function() {
 //your code goes here
});

Basically, all of your programming code goes inside this function. In fact, the ready()
function is so fundamental, you’ll probably include it on every page on which you
use jQuery. You only need to include it once, and it’s usually the first and last line of
a script. You must place it within a pair of opening and closing <script> tags (it is
JavaScript, after all) and after the <script> tag that adds jQuery to the page.

So, in the context of a complete web page, the function looks like this:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Page Title</title>
<script type="text/javascript" src="js/jquery.js"></script>
<script type="text/javascript">
$(document).ready(function() {

 // all of your JavaScript goes in here.

}); // end of ready() function
</script>
</head>
<body>
The web page content...
</body>
</html>

171chapter 5: action/reaction: making pages come alive with events

More jQuery Event
Concepts

Tip: Because the ready() function is used nearly anytime you add jQuery to a page, there’s a shorthand
way of writing it. You can remove the $(document).ready part, and just type this:

$(function() {

 // do something on document ready

});

jQuery	Events
jQuery also provides special events for dealing with two very common interactivity
issues—moving the mouse over and then off of something, and switching between
two actions when clicking.

The hover() event
The mouseover and mouseout events are frequently used together. For example,
when you mouse over a button, a menu might appear; move your mouse off the
button, and the menu disappears. Because coupling these two events is so common,
jQuery provides a shortcut way of referring to both. jQuery’s hover() function works
just like any other event, except that instead of taking one function as an argument,
it accepts two functions. The first function runs when the mouse travels over the
element, and the second function runs when the mouse moves off the element. The
basic structure looks like this:

$('#selector').hover(function1, function2);

You’ll frequently see the hover() function used with two anonymous functions. That
kind of code can look a little weird; the following example will make it clearer.
Suppose when someone mouses over a link with an ID of menu, you want a (cur-
rently invisible) DIV with an ID of submenu to appear. Moving the mouse off of the
link hides the submenu again. You can use hover() to do that:

$('#menu').hover(function() {
 $('#submenu').show();
}, function() {
 $('#submenu').hide();
}); // end hover

172 javascript & jquery: the missing manual

More jQuery Event
Concepts

To make a statement containing multiple anonymous functions easier to read, move
each function to its own line. So a slightly more readable version of the code above
would look like this:

$('#menu').hover(
 function() {
 $('#submenu').show();
 }, // end mouseover
 function() {
 $('#submenu').hide();
 } // end mouseout
); // end hover

Figure 5-4 diagrams how this code works for the mouseover and mouseout events.

Figure 5-4:
jQuery’s hover() function lets you assign
two functions at once. The first function
is run when the mouse moves over the
element, while the second function runs
when the mouse moves off the element.

mouseout

mouseover

$('#menu').hover(
 function() {
 $('#submenu').show();
 },

 function() {
 $('#submenu').hide();
 }
);

If the anonymous function method is just too confusing, you can still use plain
old named functions (page 100) to get the job done. First, create a named function
to run when the mouseover event triggers; create another named function for the
mouseout event; and finally, pass the names of the two functions to the hover() func-
tion. In other words, you could rewrite the code above like this:

function showSubmenu() {
 $('#submenu').show();
}
function hideSubmenu() {
 $('#submenu').hide();
}
$('#menu').hover(showSubmenu, hideSubmenu);

If you find this technique easier, then use it. There’s no real difference between the
two, though some programmers like the fact that by using anonymous functions you
can keep all of the code together in one statement, instead of spread out amongst
several different statements.

173chapter 5: action/reaction: making pages come alive with events

More jQuery Event
Concepts

The toggle() Event
jQuery’s toggle() event works identically to the hover() event, except that instead
of responding to mouseover and mouseout events, it responds to clicks. One click
triggers the first function; the next click triggers the second function. Use this event
when you want to alternate between two states using clicks. For example, you could
make an animation begin when a button is first clicked, and then pause that anima-
tion when the button is clicked a second time. Click yet again, and the animation
begins again.

For example, say you want to make the submenu <div> (from the hover() examples
above) appear when you first click the link, then disappear when the link is next
clicked. Just swap “toggle” for “hover” like this:

$('#menu').toggle(
 function() {
 $('#submenu').show();
 }, // end first click
 function() {
 $('#submenu').hide();
 } // end second click
); // end toggle

Or, using named functions, like this:
function showSubmenu() {
 $('#submenu').show();
}
function hideSubmenu() {
 $('#submenu').hide();
}
$('#menu').toggle(showSubmenu, hideSubmenu);

The toggle() function can accept more than two functions as arguments: for ex-
ample, if you want one thing to happen on the first click, another thing happen on
the second click, and yet another thing to happen on the third click. Each function
passed to toggle() will respond to its corresponding click. For example, the first
function runs on the first click, the second function runs on the second click, the
third function runs on the third click, and so on. Once jQuery has executed all of the
functions, it returns to the first function on the following click (for example, if you
passed three functions to toggle() then, on the fourth click, the first function would
run a second time).

The	Event	Object
Whenever a web browser fires an event, it records information about the event and
stores it in an event object. The event object contains information that was collected
when the event occurred, like the vertical and horizontal coordinates of the mouse,
the element on which the event occurred, or whether the Shift key was pressed when
the event was triggered.

174 javascript & jquery: the missing manual

More jQuery Event
Concepts

In jQuery, the event object is available to the function assigned to handling the
event. In fact, the object is passed as an argument to the function, so to access it, you
just include a parameter name with the function. For example, say you want to find
the X and Y position of the cursor when the mouse is clicked anywhere on a page.

$(document).click(function(evt) {
 var xPos = evt.pageX;
 var yPos = evt.pageY;
 alert('X:' + xPos + ' Y:' + yPos);
}); // end click

The important part here is the evt variable. When the function is called (by click-
ing anywhere in the browser window), the event object is stored in the evt variable.
Within the body of the function, you can access the different properties of the event
object using dot syntax—for example, evt.pageX returns the horizontal location of
the cursor (in other words, the number of pixels from the left edge of the window).

Note: In this example, evt is just a variable name supplied by the programmer. It’s not a special JavaScript
keyword, just a variable used to store the event object. You could use any name you want such as event
or simply e.

The event object has many different properties, and (unfortunately) the list of prop-
erties varies from browser to browser. Table 5-1 lists some common properties.

Table 5-1. Every event produces an event object with various properties that you can access within the
function handling the event

Event property Description
pageX The distance (in pixels) of the mouse pointer from the left edge of the

browser window.

pageY The distance (in pixels) of the mouse pointer from the top edge of the
browser window.

screenX The distance (in pixels) of the mouse pointer from the left edge of the
monitor.

screenY The distance (in pixels) of the mouse pointer from the top edge of the
monitor.

shiftKey Is true if the shift key is down when the event occurs.

which Use with the keypress event to determine the numeric code for the key
that was pressed (see tip, next).

target The object that was the “target” of the event—for example, for a click()
event, the element that was clicked.

data A jQuery object used with the bind() function to pass data to an event
handling function (see page 177).

175chapter 5: action/reaction: making pages come alive with events

More jQuery Event
Concepts

Tip: If you access the event object’s which property with the keypress() event, you’ll get a numeric code
for the key pressed. If you want the specific key that was pressed (a, K, 9, and so on), you need to run the
which property through a JavaScript method that converts the key number to the actual letter, number, or
symbol on the keyboard:

String.fromCharCode(evt.which)

Stopping	an	Event’s	Normal	Behavior
Some HTML elements have preprogrammed responses to events. A link, for ex-
ample, usually loads a new web page when clicked; a form’s Submit button sends the
form data to a web server for processing when clicked. Sometimes you don’t want
the web browser to go ahead with its normal behavior. For example, when a form
is submitted (the submit() event), you might want to stop the form data from being
sent if the person filling out the form left out important data.

You can prevent the web browser’s normal response to an event with the prevent-
Default() function. This function is actually a part of the event object (see the previ-
ous section), so you’ll access it within the function handling the event. For example,
say a page has a link with an ID of menu. The link actually points to another menu
page (so that visitors with JavaScript turned off will be able to get to the menu page).
However, you’ve added some clever JavaScript, so when a visitor clicks the link, the
menu appears right on the same page. Normally, a web browser would follow the
link to the menu page, so you need to prevent its default behavior, like this:

$('#menu').click(function(evt){
 // clever javascript goes here
 evt.preventDefault(); // don't follow the link
});

Another technique is simply to return the value false at the end of the event function.
For example, the following is functionally the same as the code above:

$('#menu').click(function(evt){
 // clever javascript goes here
 return false; // don't follow the link
});

Removing	Events
At times, you might want to remove an event that you had previously assigned to a
tag. jQuery’s unbind() function lets you do just that. To use it, first create a jQuery
object with the element you wish to remove the event from. Then add the unbind()
function, passing it a string with the event name. For example, if you want to prevent
all tags with the class tabButton from responding to any click events, you can write this:

$('.tabButton').unbind('click');

Take a look at a short script to see how the unbind() function works.

176 javascript & jquery: the missing manual

More jQuery Event
Concepts

1 $('a').mouseover(function() {
2 alert('You moved the mouse over me!');
3 });
4 $('#disable').click(function() {
5 $('a').unbind('mouseover');
6 });

Lines 1–3 add a function to the mouseover event for all links (<a> tags) on the page.
Moving the mouse over the link opens an alert box with the message “You moved
your mouse over me!” However, because the constant appearance of alert messages
would be annoying, lines 4–6 let the visitor turn off the alert. When the visitor clicks
a tag with an ID of disable (a form button, for example), the mouseover events are
unbound from all links, and the alert no longer appears.

Note: For more information on jQuery’s unbind() function, visit http://api.jquery.com/unbind/.

POWER USERS’ CLINIC

Stopping an Event in Its Tracks
Both Internet Explorer and the W3C event model support-
ed by Firefox, Safari, and Opera let an event pass beyond
the element that first receives the event. For example, say
you’ve assigned an event helper for click events on a par-
ticular link; when you click the link, the click event fires and
a function runs. The event, however, doesn’t stop there.
Each ancestor element (a tag that wraps around the ele-
ment that’s clicked) can also respond to that same click. So
if you’ve assigned a click event helper for a <div> tag that
the link is inside, the function for that <div> tag’s event will
run as well.

This concept, known as event bubbling, means that more
than one element can respond to the same action. Here’s
another example: Say you add a click event to an image so
when the image is clicked, a new graphic replaces it. The
image is inside a <div> tag to which you’ve also assigned
a click event. In this case, an alert box appears when the
<div> is clicked. Now when you click the image, both func-
tions will run. In other words, even though you clicked the
image, the <div> also receives the click event.

You probably won’t encounter this situation too frequently,
but when you do, the results can be disconcerting. Suppose
in the example in the previous paragraph, you don’t want
the <div> to do anything when the image is clicked. In this
case, you have to stop the click event from passing on to
the <div> tag without stopping the event in the function
that handles the click event on the image. In other words,
when the image is clicked, the function assigned to the im-
age’s click event should swap in a new graphic, but then
stop the click event.

jQuery provides a function called stopPropagation() that
prevents an event from passing onto any ancestor tags. The
function is a method of the event object (see page 173), so
you access it within an event-handling function:

$('#theLink').click(function(evt) {

 // do something

 evt.stopPropagation(); // stop event from
continuing

});

177chapter 5: action/reaction: making pages come alive with events

Advanced Event
Management

Advanced Event Management
You can live a long, happy programming life using just the jQuery event methods
and concepts discussed on the previous pages. But if you really want to get the most
out of jQuery’s event-handling techniques, then you’ll want to learn about the
bind() function.

Note: If your head is still aching from the previous section, you can skip ahead to the tutorial on page 180
until you’ve gained a bit more experience with event handling.

The bind() method is a more flexible way of dealing with events than jQuery’s event-
specific functions like click() or mouseover(). It not only lets you specify an event
and a function to respond to the event, but also lets you pass additional data for the
event-handling function to use. This lets different elements and events (for example,
a click on one link, or a mouseover on an image) pass different information to the
same event-handling function—in other words, one function can act differently
based on which event is triggered.

The basic format of the bind() function is the following:
$('#selector').bind('click', myData, functionName);

The first argument is a string containing the name of the event (like click, mouseover,
or any of the other events listed on page 159). The second argument is the data you
wish to pass to the function—either an object literal or a variable containing an
object literal. An object literal (discussed on page 145) is basically a list of property
names and values:

{
 firstName : 'Bob',
 lastName : 'Smith'
}

You can store an object literal in a variable like so:
var linkVar = {message:'Hello from a link'};

The third argument passed to the bind() function is another function—the one that
does something when the event is triggered. The function can either be an anony-
mous function or named function—in other words, this part is the same as when
using a regular jQuery event, as described on page 163.

Note: Passing data using the bind() function is optional. If you want to use bind() merely to attach an
event and function, then leave the data variable out:

$('selector').bind('click', functionName);

This code is functionally the same as:

$('selector').click(functionName);

178 javascript & jquery: the missing manual

Advanced Event
Management

Suppose you wanted to pop up an alert box in response to an event, but you wanted
the message in the alert box to be different based on which element triggered the
event. One way to do that would be to create variables with different object literals
inside, and then send the variables to the bind() function for different elements.
Here’s an example:

var linkVar = { message:'Hello from a link'};
var pVar = { message:'Hello from a paragraph'};
function showMessage(evt) {
 alert(evt.data.message);
}
$('a').bind('click',linkVar,showMessage);
$('p').bind('mouseover',pVar,showMessage);

Figure 5-5 breaks down how this code works. It creates two variables, linkVar on the
first line and pVar on the second line. Each variable contains an object literal, with
the same property name, message, but different message text. A function, showMes-
sage(), takes the event object (see page 173) and stores it in a variable named evt.
That function runs the alert() command, displaying the message property (which is
itself a property of the event object’s data property). Keep in mind that message is the
name of the property defined in the object literal.

Figure 5-5:
jQuery’s bind() function lets you pass
data to the function responding to
the event. That way, you can use a
single named function for several
different elements (even with differ-
ent types of events), while letting the
function use data specific to each
event helper.

179chapter 5: action/reaction: making pages come alive with events

Advanced Event
Management

Other	Ways	to	Use	the	bind()	Function
jQuery’s bind() function gives you a lot of programming flexibility. In addition to
the techniques listed in the previous section, it also lets you tie two or more events
to the same function. For example, say you write a program that makes a large image
appear on the screen when a visitor clicked a thumbnail image (the common “light-
box” effect found on thousands of websites; you’ll learn how it works on page 222).
You want the larger image to disappear when the visitor either clicks anywhere on
the page or hits any key on the keyboard (providing both options makes your pro-
gram respond to people who prefer the keyboard over the mouse and vice-versa).
Here’s some code that does that:

$(document).bind('click keypress', function() {
 $('#lightbox').hide();
}); // end bind

The important part is ‘click keypress’. By providing multiple event names, each sepa-
rated by a space, you’re telling jQuery to run the anonymous function when any of
the events in the list happen. In this case, when either the click or keypress event fires
on the document.

In addition, if you want to attach several events that each trigger different actions,
you don’t need to use the bind() function multiple times. In other words, if you want
to make one thing happen when a visitor clicks an element, and another when a visitor
mouses over that same element, you might be tempted to write this:

$('#theElement').bind('click', function() {
 // do something interesting
}); // end bind
$('#theElement').bind('mouseover', function() {
 // do something else interesting
}); // end bind

You can do the same thing by passing an object literal (see page 145) to the bind()
function that is composed of an event name, followed by a colon, followed by an
anonymous function. Here’s the code above rewritten, calling the bind() function
only once and passing it an object literal (in bold):

$('#theElement').bind({
 'click' : function() {
 // do something interesting
 }, // end click function
 'mouseover' : function() {
 // do something interesting
 }; // end mouseover function
}); // end bind

Note: As if that’s not enough to digest, jQuery provides still other ways to attach events to elements. In
particular, the delegate() function comes in very handy whenever you wish to attach an event to an ele-
ment that’s added to a page after the page loads (that is, an element that’s either added to the page with
JavaScript programming, or that’s downloaded to the page using the Ajax techniques described in Part 4
of this book). You can read about the delegate() function starting on page 421.

180 javascript & jquery: the missing manual

Tutorial: A One-
Page FAQ

Tutorial: A One-Page FAQ
“Frequently Asked Questions” pages are a common sight on the web. They can help
improve customer service by providing immediate answers 24/7. Unfortunately,
most FAQ pages are either one very long page full of questions and complete an-
swers, or a single page of questions that link to separate answer pages. Both solutions
slow down the visitors’ quest for answers: in the first case, forcing a visitor to scroll
down a long page for the question and answer she’s after, and in the second case,
making the visitor wait for a new page to load.

In this tutorial, you’ll solve this problem by creating a JavaScript-driven FAQ page.
All of the questions will be visible when the page loads, so it’s easy to locate a given
question. The answers, however, are hidden until the question is clicked—then the
desired answer fades smoothly into view (see Figure 5-6).

Overview	of	the	Task
The JavaScript for this task will need to accomplish several things:

• When a question is clicked, the corresponding answer will appear.
• When a question whose answer is visible is clicked, then the answer should

disappear.

In addition, you’ll want to use JavaScript to hide all of the answers when the page
loads. Why not just use CSS to hide the answers to begin with? For example, setting
the CSS display property to none for the answers is another way to hide the answers.
The problem with this technique is what happens to visitors who don’t have Java-
Script turned on: They won’t see the answers when the page loads, nor will they be
able to make them visible by clicking the questions. To make your pages viewable to
both those with JavaScript enabled and those with JavaScript turned off, it’s best to
use JavaScript to hide any page content.

Note: See the note on page 29 for information on how to download the tutorial files.

The	Programming
1. In a text editor, open the file faq.html in the chapter05 folder.

This file already contains a link to the jQuery file, and the $(document).ready()
function (page 169) is in place. First, you’ll hide all of the answers when the
page loads.

2. Click in the empty line after the $(document).ready() function, and then type
$(‘.answer’).hide();.
The text of each answer is contained within a <div> tag with the class of answer
applied to it. This one line of code selects each <div> and hides it (the hide()

181chapter 5: action/reaction: making pages come alive with events

Tutorial: A One-
Page FAQ

function is discussed on page 187). Save the page and open it in a web browser.
The answers should all be hidden.
The next step is determining which elements you need to add an event listener
to. Since the answer appears when a visitor clicks the question, you must select
every question in the FAQ. On this page, each question is a <h2> tag in the
page’s main body.

3. Press Return to create a new line and add the code in bold below to the script:
<script src="../_js/jquery-1.6.3.min.js"></script>
<script>
$(document).ready(function() {
 $('.answer').hide();
 $('.main h2')
}); // end of ready()
</script>

That’s a basic descendent selector used to target every <h2> tag inside an ele-
ment with a class of main (so it doesn’t affect any <h2> tags elsewhere on the
page). Now it’s time to add an event. The click event is a good candidate;
however, you can better meet your requirements—that clicking the question
either shows or hides the answer—using the jQuery toggle() function (see page
173). This function lets you switch between two different functions with each
mouse click.

4. Immediately following the code you typed in step 2 (on the same line), type
.toggle(.
This code marks the beginning of the toggle() function, which takes two anony-
mous functions (page 148) as arguments. The first anonymous function runs
on the first click, the second function runs on the next click. You’ll get the basic
structure of these functions in place first.

5. Press Return to create a new line, and then type:
function() {

}

This code is the basic shell of the function and represents the first argument
passed to the toggle() function. You’ll add the basic structure for the second
function next.

6. Add the code in bold, so that your script looks like this:
 1 <script src="../_js/jquery-1.6.3.min.js"></script>
 2 <script>
 3 $(document).ready(function() {
 4 $('.answer').hide();
 5 $('#main h2').toggle(
 6 function() {
 7
 8 },
 9 function() {
10
11 }

182 javascript & jquery: the missing manual

Tutorial: A One-
Page FAQ

12); // end of toggle()
13 }); // end of ready()
14 </script>

Be sure you don’t leave out the comma at the end of line 8 above. Remember
that the two functions here act like arguments passed to a function (page 102).
When you call a function, you separate each argument with a comma, like this:
prompt(‘Question’, ‘type here’). In other words, the comma on line 8 separates
the two functions. (You can leave out the comment on line 12—// end of toggle—
if you want. It’s just there to make clear that this line marks the end of the
toggle() function.)
Now it’s time to add the effect you’re after: The first time the <h2> tag is clicked,
the associated answer needs to appear. While each question is contained in a
<h2> tag, the associated answer is in a <div> tag immediately following the <h2>
tag. In addition, the <div> has a class of answer applied to it. So what you need
is a way to find the <div> tag following the clicked <h2>.

7. Within the first function (marked as line 6 in step 5 above), add $(this) .next
(‘.answer’).fadeIn(); to the script.
As discussed on page 149, $(this) refers to the element currently responding to
the event—in this case, a particular <h2> tag. jQuery provides several functions
to make moving around a page’s structure easier. The .next() function finds the
tag immediately following the current tag. In other words, it finds the tag fol-
lowing the <h2> tag. You can further refine this search by passing an additional
selector to the .next() function—the code .next(‘answer’) finds the first tag fol-
lowing the <h2> that also has the class answer applied to it. Finally, .fadeIn()
gradually fades the answer into view (the fadeIn() function is discussed on
page 187).

Note: The .next() function is just one of the many jQuery functions that help you navigate through a
page’s DOM. To learn about other helpful functions, visit http://docs.jquery.com/Traversing.

Now’s a good time to save the page and check it out in a web browser. Click one
of the questions on the page—the answer below it should open (if it doesn’t,
double-check your typing and refer to the troubleshooting tips on page 34).
In the next step, you’ll complete the second half of the toggling effect—hiding
the answer when the question is clicked a second time.

8. Add the code bolded on line 10 below:
 1 <script src="../_js/jquery-1.6.3.min.js"></script>
 2 <script>

 3 $(document).ready(function() {
 4 $('.answer').hide();
 5 $('#main h2').toggle(
 6 function() {
 7 $(this).next('.answer').fadeIn();
 8 },

183chapter 5: action/reaction: making pages come alive with events

Tutorial: A One-
Page FAQ

 9 function() {
10 $(this).next('.answer').fadeOut();
11 }
12); // end of toggle()
13 }); // end of ready()
14 </script>

Now the answer fades out on a second click. Save the page and give it a try.
While the page functions fine, there’s one nice design touch you can add. Cur-
rently, each question has a small plus sign to the left of it. The plus sign is a
common icon used to mean, “Hey, there’s more here.” To indicate that a visitor
can click to hide the answer, replace the plus sign with a minus sign. You can do
it easily by just adding and removing classes from the <h2> tags.

9. Add two final lines of code (lines 8 and 12 below). The finished code should
look like this:
 1 <script src="../_js/jquery-1.6.3.min.js"></script>
 2 <script>
 3 $(document).ready(function() {
 4 $('.answer').hide();
 5 $('#main h2').toggle(
 6 function() {
 7 $(this).next('.answer').fadeIn();
 8 $(this).addClass('close');
 9 },
10 function() {
11 $(this).next('.answer').fadeOut();
12 $(this).removeClass('close');
13 }
15); //end toggle
15 });
16 </script>

This code simply adds a class named close to the <h2> tag when it’s clicked the
first time, then removes that class when it’s clicked a second time. The minus
sign icon is defined within the style sheet as a background image. (Once again,
CSS makes JavaScript programming easier.)
Save the page and try it out. Now when you click a question, not only does the
answer appear, but the question icon changes (see Figure 5-6).

184 javascript & jquery: the missing manual

Tutorial: A One-
Page FAQ

Figure 5-6:
With just a few lines
of JavaScript, you can
make page elements
appear or disappear
with a click of the
mouse.

185

chapter
6

Animations and Effects

In the last two chapters, you learned the basics of using jQuery: how to load the
jQuery library, select page elements, and respond to events like a visitor click-
ing on a button or mousing over a link. Most jQuery programs involve three

steps: selecting an element on the page, attaching an event to that element, and then
responding to that event by doing something. In this chapter, you’ll start learning
about the “doing something” part with jQuery’s built-in effect and animation func-
tions. You’ll also get a little CSS-refresher covering a few important CSS properties
related to creating visual effects.

jQuery Effects
Making elements on a web page appear and disappear is a common JavaScript task.
Drop-down navigation menus, pop-up tooltips, and automated slideshows all rely
on the ability to show and hide elements when you want to. jQuery supplies a hand-
ful of functions that achieve the goal of hiding and showing elements.

To use each of these effects, you apply them to a jQuery selection, like any other
jQuery function. For example, to hide all tags with a class of submenu, you can
write this:

$('.submenu').hide();

Each effect function also can take an optional speed setting and a callback function.
The speed represents the amount of time the effect takes to complete, while a call-
back is a function that runs when the effect is finished. (See "Performing an Action
After an Effect is Completed" on page 196 for details on callbacks.)

To assign a speed to an effect, you supply one of three string values—‘fast’, ‘normal’,
or ‘slow’—or a number representing the number of milliseconds the effect takes

186 javascript & jquery: the missing manual

jQuery Effects

(1,000 is 1 second, 500 is half of a second, and so on). For example, the code to make
an element fade out of view slowly would look like this:

$('element').fadeOut('slow');

Or if you want the element to fade out really slowly, over the course of 10 seconds:
$('element').fadeOut(10000);

When you use an effect to make an element disappear, the element isn’t actually
removed from the web browser’s understanding of the page. The element still exists
in the DOM, or Document Object Model (page 127). The element’s code is still in
the browser’s memory, but its display setting (same as the CSS display setting) is set
to none. Because of that setting, the element no longer takes up any visual space, so
other content on the page may move into the position previously filled by the hid-
den element. You can see all of the jQuery effects in action on the effects.html file
included in the testbed tutorial folder (see Figure 6-1).

Note: The keywords used for setting the speed of an effect—‘fast,’ ‘normal,’ and ‘slow’—are the same as
200 milliseconds, 400 milliseconds, and 600 milliseconds. So

$('element').fadeOut('slow');

is the same as

$('element').fadeOut(600);

Figure 6-1:
You can test out jQuery’s visual effects on the
effects.html file located in the testbed folder.
Click the function text—fadeOut(‘#photo’), for
example—to see how text and images look
when they fade out, slide up, or appear. Some
effects will appear in grey to indicate that
they don’t apply to the element. For example,
it doesn’t make much sense for the code to
make a photo appear if it’s already visible on
the page.

187chapter 6: animations and effects

jQuery Effects

Basic	Showing	and	Hiding
jQuery provides three functions for basic hiding and showing of elements:

• show() makes a hidden element visible. It doesn’t have any effect if the element is
already visible on the page. If you don’t supply a speed value, the element appears
immediately. However, if you supply a speed value—show(1000), for example—
the element animates from the top-left corner down to the bottom-left corner.

• hide() hides a visible element. It doesn’t have any effect if the element is already
hidden, and as with the show() function, if you don’t supply a speed value, the
element immediately disappears. However, with a speed value the element ani-
mates out of view in a kind of shrinking motion.

• toggle() switches an element’s current display value. If the element is currently
visible, toggle() hides the element; if the element is hidden, then toggle() makes
the element appear. This function is ideal when you want to have a single control
(like a button) alternately show and hide an element.

In the tutorial on page 180 of the previous chapter, you saw both the hide() and
toggle() functions in action. That script uses hide() to make all of the answers on an
FAQ page disappear when the page’s HTML loads, then uses toggle() to alternately
show and hide those answers when you click the question.

Fading	Elements	In	and	Out
For a more dramatic effect, you can fade an element out or fade it in—in either case,
you’re just changing the opacity of the element over time. jQuery provides three
fade-related functions:

• fadeIn() makes a hidden element fade into view. First, the space for the element
appears on the page (this may mean other elements on the page move out of the
way); then the element gradually becomes visible. This function doesn’t have
any effect if the element is already visible on the page. If you don’t supply a speed
value, the element fades in using the ‘normal’ setting (400 milliseconds).

• fadeOut() hides a visible element by making it fade out of view like a ghost. It
doesn’t have any effect if the element is already hidden, and like the fadeIn()
function, if you don’t supply a speed value, the element fades out over the course
of 400 milliseconds.

• fadeToggle() combines both fade in and fade out effects. If the element is cur-
rently hidden, it fades into view; if it’s currently visible, the element fades out of
view. You could use this function to make an instruction box appear or disap-
pear from a page. For example, say you have a button with the word “instruc-
tions” on it. When a visitor clicks the button, a div with instructions fades into
view; clicking the button a second time fades the instructions out of view. To
make the box fade in or out over the course of half a second (500 milliseconds),
you could write this code:

188 javascript & jquery: the missing manual

jQuery Effects

$('#button').click(function() {
 $('#instructions').fadeToggle(500);
}); // end click

• fadeTo() works slightly differently than other effect functions. It fades an image
to a specific opacity. For example, you can make an image fade so that it’s semi-
transparent. Unlike other effects, you must supply a speed value. In addition,
you supply a second value from 0 to 1 that indicates the opacity of the element.
For example, to fade all paragraphs to 75% opacity, you’d write this:
$('p').fadeTo('normal',.75);

This function changes an element’s opacity regardless of whether the element is
visible or invisible. For example, say you fade a currently hidden element to 50%
opacity, the element fades into view at 50% opacity. If you hide a semitranspar-
ent element and then make it reappear, its opacity setting is recalled.
If you fade an element to 0 opacity, the element is no longer visible, but the space
it occupied on the page remains. In other words, unlike the other disappearing
effects, fading to 0 will leave an empty spot on the page where the element is.

Sliding	Elements
For a little more visual action, you can also slide an element in and out of view. The
functions are similar to the fading elements in that they make page elements appear
and disappear from view, and may have a speed value:

• slideDown() makes a hidden element slide into view. First, the top of the element
appears and anything below the element is pushed down as the rest of the ele-
ment appears. It doesn’t have any effect if the element is already visible on the
page. If you don’t supply a speed value, the element slides in using the ‘normal’
setting (400 milliseconds).

• slideUp() removes the element from view by hiding the bottom of the element
and moving anything below the element up until the element disappears. It
doesn’t have any effect if the element is already hidden, and as with the slide-
Down() function, if you don’t supply a speed value, the element slides out over
the course of 400 milliseconds.

• slideToggle() applies the slideDown() function if the element is currently hidden,
and the slideUp() function if the element is visible. This function lets you have a
single control (like a button) both show and hide an element.

189chapter 6: animations and effects

jQuery Effects

UP TO SPEED

Absolute Positioning with CSS
Normally, when you hide an element on a web page, other
elements move to fill the space. For example, if you hide an
image on a page, the image disappears, and content below
that image moves up the page. Likewise, making an ele-
ment appear forces other content to move to make room
for the newly displayed element. You may not want content
on your page to jump around like that. In that case, you can
turn to CSS and absolute positioning to place an element
outside the flow of normal page content. In other words,
you can have a div, image, or paragraph appear on top of
the page, as if sitting on its own separate layer, using the
CSS position property.

To make an element appear above the page, give it a posi-
tion value of absolute. You can then specify the placement
for that element on the page using the left, right, top and/or
bottom properties. For example, say you have a <div> tag
containing a login form. The login form won’t normally be
visible, but when a visitor clicks a link, that form slides into
place, sitting above other content on the page. You could
position that div like this:

#login {

 position: absolute;

 left: 536px;

 top: 0;

 width: 400px;

}

This style places the div at the top of the browser window
and 536px from the left edge. You can also place an ele-
ment from the right edge of the browser window using
the right property, or in relationship to the bottom edge of
the browser window using the bottom property.

Of course, you may want to place an element in relation to
something other than the browser window. For example,
pop-up tooltips are usually positioned in relation to some
other element: A word on the page might have a ? next to
it, that when clicked, opens a small box with a definition for
that word. In this case, the tooltip needs to be positioned
not in relationship to the top, left, right, or bottom of the
browser window, but next to the word. To achieve this, you
need to supply a position of relative to an element that sur-
rounds the absolutely positioned item. For example, look
at this HTML:

Heffalump

An imaginary, el-
ephant-like creative from Winnie the Pooh</
span>

To make the definition span appear below the word, you
first need to position the word span relatively, and then
position the definition absolutely like this:

.word { position: relative; }

.definition {

 position: absolute;

 bottom: -30px;

 left: 0;

 width: 200px;

}

For more information on absolute positioning, visit www
.elated.com/articles/css-positioning/ or pick up a copy of
CSS: The Missing Manual.

www.elated.com/articles/css-positioning/
www.elated.com/articles/css-positioning/

190 javascript & jquery: the missing manual

Tutorial: Login Slider

Tutorial: Login Slider
In this tutorial, you’ll get a little practice with using jQuery effects by creating a com-
mon user interface element: a panel that slides into and out of view with a click of
the mouse (see Figure 6-2).

Figure 6-2:
Now you don’t see it, now you do. The login form is normally
hidden from view (top), but a simple mouse click reveals the form,
ready for the visitor to fill out and log on.

The basic task is rather simple:

1. Select the paragraph with the “Login” message on it.
Remember that a lot of jQuery programming first begins with selecting an
element on the page. In this case, the “Login” paragraph will receive clicks from
a visitor.

2. Attach a click event to that paragraph.
JavaScript isn’t interactive without events: The visitor needs to interact with the
selection (the Login paragraph) to make something happen.

3. Toggle the display of the form on and off.
The previous two steps are just review (but necessary for so much of jQuery pro-
gramming). This last step is where you’ll use the effects you’ve learned about.
You can make the form instantly appear (the show() function), slide into view
(the slideDown() function), or fade into view (the fadeIn() function.)

Note: See the note on page 29 for information on how to download the tutorial files.

191chapter 6: animations and effects

Tutorial: Login Slider

The	Programming
1. In a text editor, open the file signup.html in the chapter06 folder.

This file already contains a link to the jQuery file, and the $(document).ready()
function (page 169) is in place. First, you’ll select the paragraph with the
“Login” text.

2. Click in the empty line after the $(document).ready() function, and then
type $(‘#open’).
The “Login” text is inside a paragraph tag with the ID of open: <p id=“open”
>Login</p>, so the code you just typed will select that element. Now, it’s time
to add an event handler.

3. Add the bolded code below, so that the script looks like this:
$(document).ready(function() {
 $('#open').click(function() {

 }); // end click
}); // end ready

This code adds a click handler, so each time a visitor clicks on the paragraph,
something happens. In this case, the form should appear when clicked once
and then disappear when clicked again, appear on the next click, and so on. In
other words, the form toggles between visible and invisible. jQuery offers three
functions that will serve this purpose: toggle(), fadeToggle(), and slideToggle().
The difference is merely in how the effect looks.

4. Click in the empty line inside the click function and type:
$('#login form').slideToggle(300);

This code selects the login form, then slides it into view if it currently isn’t
visible, and then slides it back out of view if it is visible. Finally, you’ll change
the class of the paragraph, so that the “Login” can change appearance using a
CSS class style.

5. Add the code in bold below, so the finished script looks like this:
1 $(document).ready(function() {
2 $('#open').click(function() {
3 $('#login form').slideToggle(300);
4 $(this).toggleClass('close');
5 }); // end click
6 }); // end ready

As you’ll recall from page 149, when you’re inside of an event handler, you can
use $(this) to refer to the element that responds to the event. In this case, $(this)
refers to the paragraph the visitor clicks on—the $(‘#open’) in line 2 above. The
toggleClass() function simply adds or removes a class from the element. Like
the other toggle functions, toggleClass() adds the specified class if it’s missing or
removes the class if it’s present. In this example, there’s a class style—.close—in
a style sheet on the page. (Look in the <head> of the file and you can see the
style and what it does.)

192 javascript & jquery: the missing manual

Animations

6. Save the page and preview it in a web browser.
Make sure you click the “Login” paragraph several times to see how it works.
You’ll find a finished version of the tutorial—complete_signup.html—in the
chapter06 folder. Try out the other toggle effects as well, by replacing slideToggle()
with toggle() or fadeToggle().

But what if you want two different effects? One for making the form appear—slide
the form down into view, for example—and a different effect to make it disappear—
fade out of view, for example. The code in step 5 won’t exactly work, since the click()
function doesn’t really let you choose between two different actions. However, as
you read on page 173, jQuery offers a special event—the toggle() event—for dealing
with this kind of situation. Not to be confused with the toggle() effect—which makes
an element appear and disappear—the toggle() event lets you run different code al-
ternating between odd and even clicks. So on the first click, the form appears, and
on the second click, it disappears.

To make the form slide into view, then fade out of view on alternating clicks, you
use this code:

$(document).ready(function() {
 $('#open').toggle(
 function() {
 $('#login form').slideDown(300);
 $(this).addClass('close');
 },
 function() {
 $('#login form').fadeOut(600);
 $(this).removeClass('close');
 }
); // end toggle
}); // end ready

Animations
You aren’t limited to just the built-in effects jQuery supplies. Using the animate()
function, you can animate any CSS property that accepts numeric values such as
pixel, em, or percentage values. For example, you can animate the size of text, the
position of an element on a page, the opacity of an object, or the width of a border.

Note: jQuery, by itself, can’t animate color—for example, the color of text, background color, or border
color. However, the jQuery Color plug-in can do this. We’ve included a copy of the plug-in with the tutori-
als, and you’ll see an example of animated colors in action on page 198. You can get the latest version
of the color plug-in at https://github.com/jquery/jquery-color. (In a nutshell, a plug-in is a separate file
containing additional JavaScript programming that adds features to jQuery.)

To use this function, you must pass an object literal (see page 145) containing a list
of CSS properties you wish to change and the values you wish to animate to. For
example, say you want to animate an element by moving it 650 pixels from the left

193chapter 6: animations and effects

Animations

edge of the page, changing its opacity to 50%, and enlarging its font size to 24 pixels.
The following code creates an object with those properties and values:

{
 left: '650px',
 opacity: .5,
 fontSize: '24px'
}

Note that you only have to put the value in quotes if it includes a measurement like
px, em, or %. In this example, you need quotes around ‘650px’ since it contains ‘px’,
but not around the opacity value, since .5 is simply a number and doesn’t contain
any letters or other characters. Likewise, putting quotes around the property (left,
opacity, and fontSize) is optional.

Note: JavaScript doesn’t accept hyphens for CSS properties. For example, font-size is a valid CSS prop-
erty, but JavaScript doesn’t understand it because the hyphen has special meaning (it’s JavaScript’s minus
operator). When using CSS properties in JavaScript, remove the hyphen and capitalize the first letter of
the word following the hyphen. For example, font-size becomes fontSize, and border-left-width becomes
borderLeftWidth. However, jQuery lets you use the hyphen, but only if you put the property name in
quotes like this:

{

 'font-size': '24px',

 'border-left-width': '2%'

}

Suppose you want to animate an element with an ID of message using these settings.
You can use the animate() function like this:

$('#message').animate(
{
 left: '650px',
 opacity: .5,
 fontSize: '24px'
},
1500
);

The animate() function can take several arguments. The first is an object literal
containing the CSS properties you wish to animate. The second is the duration (in
milliseconds) of the animation. In the above example, the animation lasts 1,500 mil-
liseconds, or 1.5 seconds.

Note: In order to animate a position of an element using the CSS left, right, top, or bottom properties,
you must set that element’s CSS position property to either absolute or relative. Those are the only two
positioning properties that let you assign positioning values to them (see the box on page 189).

194 javascript & jquery: the missing manual

Animations

You can also set a property relative to its current value using += or -= as part of the
animation options. For example, say you want to animate an element by moving it
50 pixels to the right each time you click on it. Here’s how:

$('#moveIt').click(function() {
 $(this).animate(
 {
 left:'+=50px'
 },
 1000);
});

Note: You can’t animate the border-width property. It’s a shorthand property that sets the width of all four
borders at once:

border-width: 2px 5px 2px 6px;

If you want to animate the width of a border, you need to use the full name for each border you wish to
animate. For example, if you want to animate all four borders so that they end up 20 pixels wide each, you
need to add each border width property (border-width-left, border-width-top, and so on) to the object
literal passed to the animate function:

$('#element').animate(

 {

 borderTop: 20px,

 borderRight: 20px,

 borderBottom: 20px,

 borderLeft: 20px

 }, 1000);

Easing
The jQuery effects functions (slideUp(), fadeIn(), an so on) and the animation() func-
tion accept another argument that controls the speed during the animation: easing,
which refers to the speed during different points of the animation. For example,
while moving an element across the page, you could have the element’s movement
start slowly, then get really fast, and finally slow down as the animation completes.
Adding easing to an animation can make it more visually interesting and dynamic.

jQuery includes only two easing methods: swing and linear. The linear method pro-
vides a steady animation so each step of the animation is the same (for example, if
you’re animating an element across the screen, each step will be the same distance
as the previous one). Swing is a bit more dynamic, as the animation starts off a bit
more quickly, then slows down. Swing is the normal setting, so if you don’t specify
any easing, jQuery uses the swing method.

The easing method is the second argument for any jQuery effect, so to make an
element slide up using the linear method, you’d write code like this:

$('#element').slideUp(1000,'linear');

195chapter 6: animations and effects

Animations

When using the animate() function, the easing method is the third argument after
the object literal containing the CSS properties you wish to animate, and the overall
speed of the animation. For example, to use the linear easing method with the ani-
mation code from page 193, you’d write:

$('#message').animate(
{
 left: '650px',
 opacity: .5,
 fontSize: '24px'
},
1500,
'linear'
);

You’re not limited to the two easing methods jQuery supplies, however. Thanks to
the industrious work of other programmers, you can add a whole bunch of other
easing methods—some quite dramatic and fun to watch. Using the jQuery easing
plug-in (available at http://gsgd.co.uk/sandbox/jquery/easing/ and in the tutorials
download), you can effect an animation in some pretty dramatic ways. For example,
the easeInBounce method makes an animation rapidly change in speed and direc-
tion as if the element where bouncing.

Tip: There are many different easing methods available with the easing plug-in, and most of the names
don’t really help you understand what the easing method will look like. To get a better visual understand-
ing of the different easing options, visit www.robertpenner.com/easing/easing_demo.html, where you can
try each method yourself.

To use the easing plug-in (which is an external JavaScript file), you attach the file
to your page following the code that links to the jQuery library. Once you’ve linked
to the easing plug-in, you can use any of the easing methods available (see http://
gsgd .co.uk/sandbox/jquery/easing/ for a complete list). For example, say you want
to make a div tag grow in size when a visitor clicks on it, and you want to make the
animation more interesting by using the easeInBounce method. Assuming the div
has an ID of animate applied to it, your code may look like this:

1 <script src="js/jquery-1.6.3.min.js"></script>
2 <script src="js/jquery.easing.1.3.js"></script>
3 <script>
4 $(document).ready(function() {
5 $('#animate').click(function() {
6 $(this).animate(
7 {
8 width: '400px',
9 height: '400px'

10 },
11 1000,
12 'easeInBounce'); // end animate
13 }); // end click
14 }); // end ready
15 </script>

www.robertpenner.com/easing/easing_demo.html
http://gsgd.co.uk/sandbox/jquery/easing/
http://gsgd.co.uk/sandbox/jquery/easing/

196 javascript & jquery: the missing manual

Performing an
Action After an
Effect Is Completed

Lines 1 and 2 load jQuery and the easing plug-in. Line 4 is the every-present ready()
function (page 169), and line 5 adds a click handler to the div. The heart of the action
are lines 6–12. As you’ll recall from page 149, when you’re inside of an event, $(this)
refers to the element that’s responding to the event—in this case, the <div> tag. In
other words, by clicking the div, you also animate that div by changing its width and
height (lines 8 and 9). Line 11 makes the animation occur over 1 second (1000 mil-
liseconds), and line 12 sets the easing method to easeInBounce (you can substitute
any easing method, like easeInOutSine, easeInCubic, and so on).

Note: You can find an example of this code in action in the chapter06 folder of the tutorial files. Open
the file easing_example1.html in a web browser. The file easing_example2.html shows how to use the
toggle() event (page 173) to apply two different easing methods to the div.

Performing an Action After an Effect Is Completed
Sometimes you want to do something once an effect is complete. For example, sup-
pose when a particular photo fades into view, you want a caption to appear. In other
words, the caption must pop onto the page after the photo finishes fading into view.
Normally, effects aren’t performed one after the other; they all happen at the same
time they’re called. So if your script has one line of code to fade the photo into view,
and another line of code to make the caption appear, the caption will appear while
the photo is still fading in.

To get around this dilemma, you can pass a callback function to any effect. That’s a
function that runs only after the effect is completed. The callback function is passed
as the second argument to most effects (the third argument for the fadeTo() function).

For example, say you have an image on a page with an ID of photo, and a paragraph
below it with an ID of caption. To fade the photo into view and then make the cap-
tion fade into view, you can use a callback function like this:

$('#photo').fadeIn(1000, function() {
 $('#caption').fadeIn(1000);
});

Of course, if you want to run the function when the page loads, you’d want to hide
the photo and caption first, and then do the fadeIn effect:

$('#photo, #caption').hide();
$('#photo').fadeIn(1000, function() {
 $('#caption').fadeIn(1000);
});

If you use the animate() function, then the callback function appears after any other
arguments—the object literal containing the CSS properties to animate, the anima-
tion duration, and the easing setting. The easing setting is optional, however, so you
can also just pass the animate() function, property list, duration, and callback func-
tion. For instance, say you want to not only fade the photo into view but also increase

197chapter 6: animations and effects

Performing an
Action After an

Effect Is Completed
its width and height from zero to full size (a kind of zooming effect). You can use the
animate() function to do that, and then display the caption like this:

1 $('#photo').width(0).height(0).css('opacity',0);
2 $('#caption').hide();
3 $('#photo').animate(
4 {
5 width: '200px',
6 height: '100px',
7 opacity: 1
8 },
9 1000,

10 function() {
11 $('#caption').fadeIn(1000);
12 }
13); // end animate

Line 1 of the code above sets the width, height, and opacity of the photo to 0. (This
hides the photo and gets it ready to be animated.) Line 2 hides the caption. Lines
3–13 are the animation function in action and the callback occurs on lines 10–12.
This probably looks a little scary, but, unfortunately, the callback function is the only
way to run an action (including an effect on a different page element) at the comple-
tion of an effect.

Note: The file callback.html in the chapter06 folder shows the above code in action.

Callback functions can get tricky when you want to animate several elements in a
row: for example, to make an image move into the center of the screen, followed by
a caption fading into view, and then having both the image and caption fade out. To
make that happen, you need to pass a callback function to a callback function like this:

$('#photo').animate(
 {
 left: '+=400px',
 },
 1000,
 function() { // first callback function
 $('#caption').fadeIn(1000,
 function() { // second callback function
 $('#photo, #caption').fadeOut(1000);
 } // end second callback
); // end fadeIn
 } // end first callback function
); // end animate

Note: The file multiple-callbacks.html in the chapter06 folder shows this code in action.

198 javascript & jquery: the missing manual

Tutorial: Animated
Dashboard

However, you don’t need to use a callback function if you want to add additional
animations to the same page element. For example, say you want to move a photo
onto the screen, then make it fade out of view. In this case, you simply use the
animate() function to move the photo and then fade the image out of view. You can
do that like this:

$('#photo').animate(
 {
 left: '+=400px',
 },
 1000
); // end animate
$('#photo').fadeOut(3000);

In this case, although the browser executes the code immediately, jQuery places each
effect into a queue, so that first the animation runs and then the fadeOut() function
runs. Using jQuery chaining (page 137), you could rewrite the code above like this:

$('#photo').animate(
 {
 left: '+=400px',
 },
 1000).fadeOut(3000);

If you want a photo to fade in, fade out, and then fade in again, you can use chaining
like this:

$('#photo').fadeIn(1000).fadeOut(2000).fadeIn(250);

Note: For more information on how the effects queue works visit the jQuery website: http://api.jquery
.com/jQuery.queue/.

One additional jQuery function that can come in handy when queueing up effects
on an element is the delay(). This function simply waits the specified number of mil-
liseconds before beginning the next effect in the queue. For example, say you want
to fade an image into view, wait 10 seconds, and then fade it out of view. You can use
the delay() function like this:

$('#photo').fadeIn(1000).delay(10000).fadeOut(250);

Tutorial: Animated Dashboard
In this tutorial, you’ll use the animate() function to move a <div> tag right from off
the left edge of the page into view. The div is absolutely positioned (see the box on
page 189 for more on absolute positioning) so that most of the box hangs off the
left edge of the page outside the boundaries of the browser window (Figure 6-3,
left). When a visitor mouses over the visible edge of the div, that div moves com-
pletely into view (Figure 6-3, right). To make this effect more fun, you’ll also use two
plug-ins to animate the background color of the div and to use a couple of different
easing methods.

http://api.jquery.com/jQuery.queue/
http://api.jquery.com/jQuery.queue/

199chapter 6: animations and effects

Tutorial: Animated
Dashboard

Figure 6-3:
You can have a lot
of fun by hiding
page elements off
one of the edges of
the browser window
(like the div in the
left image, which is
mostly out of view).
Using the animate()
function, you can
then bring that page
element fully into
view (right).

Note: See the note on page 29 for information on how to download the tutorial files.

The basic task is rather simple:

1. Select the <div> tag.
Remember that a lot of jQuery programming begins with selecting an element
on the page—in this case, the div tag which a visitor mouses over.

2. Attach a hover event.

200 javascript & jquery: the missing manual

Tutorial: Animated
Dashboard

The hover event (described on page 171) is a special jQuery function, not a real
JavaScript event, that lets you perform one set of actions when a visitor mouses
over an element, then a second set of actions when the visitor mouses off the
element (the hover event is really just a combination of the mouseOver and
mouseOut events described on page 159).

3. Add the animate function for the mouseover event.
When a visitor mouses over the div, you’ll animate the left position of the div,
moving it from out of view on the left edge of the browser window. In addition,
you’ll animate the background color of the div.

4. Add another animate function for the mouseout event.
When a visitor moves the mouse off the div, you’ll animate the div back to its
original position and with its original background color.

The	Programming
1. In a text editor, open the file animate.html in the chapter06 folder.

This file already contains a link to the jQuery file, and the $(document).ready()
function (page 169) is in place. However, since you’ll be animating the back-
ground color of the div and using a couple of interesting easing methods, you
need to attach two jQuery plug-ins—the color plug-in and the easing plug-in.

2. Click in the empty line after the first <script> tag and add the code in bold
below:
<script src="../_js/jquery-1.6.3.min.js"></script>
<script src="../_js/jquery.easing.1.3.js"></script>
<script src="../_js/jquery.color.js"></script>

jQuery plug-ins (which you’ll learn more about in the next chapter) are simply
external JavaScript files that add functionality to jQuery, and often let you add
complex effects or functionality to your site, without a lot of programming (on
your part). Next you’ll select the div and then add the hover() function to it.

3. Click in the empty line inside the $(document).ready() function and type
$(‘#dashboard’).hover(); // end hover so your code looks like this:
$(document).ready(function() {
 $('#dashboard').hover(); // end hover
}); // end ready

$(‘#dashboard’) selects the <div> tag (which has the id dashboard applied to it).
The hover() function takes two arguments—two anonymous functions (page
148)—that describe what to do when a visitor moves his mouse over the div,
and then moves his mouse off the div. Instead of typing all of the code at once,
you’ll build it up piece by piece, first adding the hover() function, then adding
the “shell” for two anonymous functions. This approach is helpful since the nest
of parentheses, braces, commas, and semicolons can overwhelm you if you’re
not careful.

4. Click between the parentheses of the hover() function and add two empty,
anonymous functions:

201chapter 6: animations and effects

Tutorial: Animated
Dashboard

$(document).ready(function() {
 $('#dashboard').hover(
 function() {

 },
 function() {

 }
); // end hover
}); // end ready

jQuery plug-ins (which you’ll learn more about in the next chapter) are simply
external JavaScript files that add functionality to jQuery, and often let you add
complex effects or functionality to your site, without a lot of programming on
your part. Next you’ll add the hover() function.

Tip: It’s a good idea to test your code frequently to make sure you haven’t made any typos. In step 4, you
can type alert(‘mouseOver’) inside the first anonymous function and alert(‘mouseOut’) inside the second
anonymous function, and then preview the page in a web browser. You should see an alert box appear
when you mouse over the div, and then when you mouse out (for example, to close the first alert dialog
box), you’ll see a second alert box. If no alert box appears, you’ve made a typo. Double-check your code
against these steps, or use the steps on page 34 to find errors using the browser’s error console.

5. Inside the first anonymous function, type $(this).animate(); // end animate.
As discussed on page 149, inside an event, $(this) refers to the page element to
which you’ve attached the event. In this case, $(this) refers to the <div> tag with
the ID dashboard. In other words, mousing over this div will also animate this div.

6. Add an object literal with the CSS properties you wish to animate:
$(document).ready(function() {
 $('#dashboard').hover(
 function() {
 $(this).animate(
 {
 left: '0',
 backgroundColor: 'rgb(255,255,255)'
 }
); // end animate
 },
 function() {

 }
); // end hover
}); // end ready

The first argument to the animate() function is an object literal (page 145) con-
taining CSS properties. In this case, the div currently has a left value of -92px, so
that most of the div is hidden, hanging off the left edge of the browser window.
By animating its left value to 0, you’re essentially moving it completely into view
on the left edge. Likewise, thanks to the color plug-in, you’re changing its back-
ground color from blue to white. Next, you’ll set a duration for the animation.

202 javascript & jquery: the missing manual

Tutorial: Animated
Dashboard

7. Type a comma after the closing } of the object literal, press Returns and then
type 500.
The comma marks the end of the first argument passed to the animate() func-
tion, while the 500 sets the length of the animation to half a second or 500 mil-
liseconds. Lastly, you’ll set an easing method.

8. Type a comma after the 500, hit Return, and type ‘easeInSine’ so your code
looks like this:
$(document).ready(function() {
 $('#dashboard').hover(
 function() {
 $(this).animate(
 {
 left: '0',
 backgroundColor: 'rgb(255,255,255)'
 }
 500,
 'easeInSine'
); // end animate
 },
 function() {

 }
); // end hover
}); // end ready

The last argument to the animate() function here—‘easeInSine’—tells the func-
tion to use an easing method that starts off somewhat slowly and then speeds up.

9. Save the file. Preview it in a browser and mouse over the div.
The div should scoot into view. If it doesn’t, troubleshoot using the techniques
described on page 34. Of course, when you mouse off the div, nothing happens.
You have to add the animate function to the second anonymous function.

10. Add the code below to the second anonymous function:
$(this).animate(
 {
 left: '-92px',
 backgroundColor: 'rgb(110,138,195)'
 },
 1500,
 'easeOutBounce'
); // end animate

This code reverses the process of the first animation, moving the div back off
the left edge of the window and reverting the background color to blue. The
timing is a bit different—1.5 seconds instead of half a second—and the easing
method is different.

11. Save the file. Preview it in a browser and move your mouse over and off of
the div.

203chapter 6: animations and effects

Tutorial: Animated
Dashboard

You’ll see the div move into view and then out of view. However, if you move the
mouse over and off the div repeatedly and quickly, you’ll notice some strange
behavior: The div will keep sliding in and out of view long after you’ve finished
moving the mouse. This problem is caused by how jQuery queues up anima-
tions on an element. As described on page 198, any animation you add to an
element gets put into a sort of queue for that element. For example, if you have
an element fade into view, fade out of view, and then fade back into view, jQuery
performs each effect in order, one after the other.
What’s happening in the code for this tutorial is that each time you mouse onto
and off of the div, an animation is added to the queue; so, rapidly mousing over
the div creates a long list of effects for jQuery to perform: Animate the div into
view, animate the div out of view, animate the div into view, animate the div out
of view, and so on. The solution to this problem is to stop all animations on the
div before performing a new animation. In other words, when you mouse over
the div, and that div is in the process of being animated, then jQuery should
stop the current animation, and proceed with the animation required by the
mouseover. Fortunately, jQuery supplies a function—the stop() function—for
just such a problem.

12. Add .stop() between $(this) and .animate in the two anonymous functions.
The finished code should look like this (additions are in bold):
$(document).ready(function() {
 $('#dashboard').hover(
 function() {
 $(this).stop().animate(
 {
 left: '0',
 backgroundColor: 'rgb(255,255,255)'
 }
 500,
 'easeInSine'
); // end animate
 },
 function() {
 $(this).stop().animate(
 {
 left: '-92px',
 backgroundColor: 'rgb(110,138,195)'
 },
 1500,
 'easeOutBounce'
); // end animate
 }
); // end hover
}); // end ready

The .stop() function here simply ends any animations on the div before starting
a new one, and prevents multiple animations from building up in the queue.
Save the page and try it out in a web browser. You can find a finished version of
this tutorial—complete_animate.html—in the chapter06 folder.

3
Part Three: Building Web
Page Features
Chapter	7:	Improving	Your	Images

Chapter	8:	Improving	Navigation

Chapter	9:	Enhancing	Web	Forms

Chapter	10:	Expanding	Your	Interface

207

chapter
7

Improving Your Images

Web designers use images to improve a page’s design, decorate navigation
bars, highlight elements on a page—and to show the world what fun they
had on their last vacation. Adding an image to a web page immediately

injects interest and visual appeal. When you add JavaScript to the mix, however, you
can really add excitement by dynamically changing images on a page, presenting an
animated photo gallery, or showing off a series of photos in a self-running slideshow.
In this chapter, you’ll learn a slew of tricks for manipulating and presenting images
on your website.

Swapping Images
One of the most common uses of JavaScript is the simple image rollover: When you
move your mouse over an image, it changes to another image. This basic technique
has been used since the dawn of JavaScript to create interactive navigation bars
whose buttons change appearance when the mouse hovers over them.

But in the past couple of years, more and more designers have turned to CSS to
achieve this same effect (for example, see www.monkeyflash.com/css/image-rollover-
navbar/). However, even if you’re using CSS to create interactive navigation bars,
you still need to understand how to use JavaScript to swap one image for another if
you want to create slide shows, image galleries, and adding other types of interactive
graphic effects to a web page.

www.monkeyflash.com/css/image-rollover-navbar/
www.monkeyflash.com/css/image-rollover-navbar/

208 javascript & jquery: the missing manual

Swapping Images

Changing	an	Image’s	src	Attribute
Every image displayed on a web page has a src (short for source) attribute that indi-
cates a path to a graphic file; in other words, it points to an image on a web server. If
you change this property to point to a different graphic file, the browser displays the
new image instead. Say you have an image on a page and you assign it an ID of photo.
Using jQuery, you can dynamically change the src attribute for an image.

For example, suppose you have an image on a page and that you’ve assigned it an ID
of photo. The HTML might look something like this:

To swap in another image file, you just use the attr() function (page 146) to set the
tag’s src property to a new file, like this:

$('#photo').attr('src','images/newImage.jpg');

Note: When you change the src property of an image using JavaScript, the path to the image file is based
on the page location, not the location of the JavaScript code. This point can be confusing when you use
an external JavaScript file (page 27) located in a different folder. In the example above, the web browser
would try to download the file newImage.jpg from a folder named images, which is located in the same
folder as the web page. That method works even if the JavaScript code is included in an external file lo-
cated in another folder elsewhere on the site. Accordingly, it’s often easier to use root-relative links inside
external JavaScript files (see the box on page 28 for more information on the different link types).

Changing an image’s src attribute doesn’t change any of the tag’s other attri-
butes, however. For example, if the alt attribute is set in the HTML, the swapped-in
image has the same alt text as the original. In addition, if the width and height attri-
butes are set in the HTML, changing an image’s src property makes the new image fit
inside the same space as the original. If the two graphics have different dimensions,
then the swapped-in image will be distorted.

In a situation like rollover images in a navigation bar, the two images will most likely
be the same size and share the same alt attribute, so you don’t get that problem. But
you can avoid the image distortion problem entirely by simply leaving off the width
and height property of the original image in your HTML. Then when the new image
is swapped in, the web browser displays the image at the dimensions set in the file.

Another solution is to first download the new image, get its dimensions, and then
change the src, width, height, and alt attributes of the tag:

1 var newPhoto = new Image();
2 newPhoto.src = 'images/newImage.jpg';
3 var photo = $('#photo');
4 photo.attr('src',newPhoto.src);
5 photo.attr('width',newPhoto.width);
6 photo.attr('height',newPhoto.height);

Note: The line numbers on the left aren’t part of the code, so don’t type them. They’re just to make the
code easier to read.

209chapter 7: improving your images

Swapping Images

The key to this technique is line 1, which creates a new image object. To a web
browser, the code new Image()says, “Browser, I’m going to be adding a new image to
the page, so get ready.” The next line tells the web browser to actually download the
new image. Line 3 gets a reference to the current image on the page, and lines 4–6
swap in the new image and change the width and height to match the new image.

Tip: The jQuery attr() function can set multiple HTML attributes at once. Just pass an object literal (see
page 145) that contains each attribute name and new value. You could write the jQuery code from above
more succinctly, like this:

var newPhoto = new Image();

newPhoto.src = 'images/newImage.jpg';

$('#photo').attr({

 src: newPhoto.src,

 width: newPhoto.width,

 height: newPhoto.height

});

Normally, you’d use this image swap technique in conjunction with an event handler.
For example, you can make an image change to another image when a visitor mouses
over the image. This rollover effect is commonly used for navigation bars, and you’ll
learn how to create it on page 210. However, you can change an image in response to
any event: For example, you can make a new photo appear each time an arrow on a
page is clicked, like a slideshow.

Preloading	Images
There’s one problem with swapping in a new image using the techniques listed above:
When you swap the new file path into the src attribute, the browser has to download
the image. If you wait until someone mouses over an image before downloading the
new graphic, there’ll be an unpleasant delay before the new image appears. In the
case of a navigation bar, the rollover effect will feel sluggish and unresponsive.

To avoid that delay, preload any images that you want to immediately appear in
response to an action. For example, when a visitor mouses over a button on a navi-
gation bar, the rollover image should appear instantly. Preloading an image simply
means forcing the browser to download the image before you plan on displaying it.
When the image is downloaded, it’s stored in the web browser’s cache so that any
subsequent requests for that file are served from the visitor’s hard drive instead of
downloaded a second time from the web server.

Preloading an image is as easy as creating a new image object and setting the object’s
src property. In fact, you already know how to do that:

var newPhoto = new Image();
newPhoto.src = 'images/newImage.jpg';

210 javascript & jquery: the missing manual

Swapping Images

What makes this preloading is that you do it before you need to replace an image
currently on the web page. One way to preload is to create an array (page 59) at the
beginning of a script containing the paths to all graphics you wish to preload, then
loop through that list, creating a new image object for each one:

1 var preloadImages = ['images/roll.png',
2 'images/flower.png',
3 'images/cat.jpg'];
4 var imgs = [];
5 for (var i=0; i<preloadImages.length;i++) {
6 imgs[i] = new Image();
7 imgs[i].src = preloadImages[i];
8 }

Lines 1–3 are a single JavaScript statement that creates an array named preloadImages,
containing three values—the path to each graphic file to preload. (As mentioned
on page 61, it’s often easier to read an array if you place each array item on its own
line.) Line 4 creates a new empty array, imgs, which will store each of the preloaded
images. Lines 5–8 show a basic JavaScript for loop (see page 97), which runs once for
each item in the array preloadImages. Line 6 creates a new image object, while line 7
retrieves the file path from the preloadImages array—that’s the magic that causes the
image to download.

Rollover	Images
A rollover image is just an image swap (as discussed on page 207) triggered by the
mouse moving over an image. In other words, you simply assign the image swap to
the mouseover event. For example, say you have an image on the page with an ID of
photo. When the mouse rolls over that image, you want the new image to appear. You
can accomplish that with jQuery like this:

1 <script src="js/jquery-1.6.3.min.js"></script>
2 <script >
3 $(document).ready(function() {
4 var newPhoto = new Image();
5 newPhoto.src = 'images/newImage.jpg';
6 $('#photo').mouseover(function() {
7 $(this).attr('src', newPhoto.src);
8 }); // end mouseover
9 }); // end ready
10 </script>

Line 3 waits until the HTML has loaded, so the JavaScript can access the HTML for
the current photo. Lines 4 and 5 preload the image that you want to swap in. The rest
of the code assigns a mouseover event to the image, with a function that changes the
image’s src attribute to match the new photo.

Since rollover images usually revert back to the old image once you move the mouse
off the image, you need to also add a mouseout event to swap back the image. As
discussed on page 171, jQuery provides its own event, called hover(), which takes
care of both the mouseover and mouseout events:

211chapter 7: improving your images

Tutorial: Adding
Rollover Images

 1 <script src="js/jquery-1.6.3.min.js"></script>
 2 <script>
 3 $(document).ready(function() {
 4 var newPhoto = new Image();
 5 newPhoto.src = 'images/newImage.jpg';
 6 var oldSrc=$('#photo').attr('src');
 7 $('#photo').hover(
 8 function() {
 9 $(this).attr('src', newPhoto.src);
10 },
11 function() {
12 $(this).attr('src', oldSrc);
13 }); // end hover
14 }); // end ready
15 </script>

The hover() function takes two arguments: The first argument is an anonymous
function telling the browser what to do when the mouse moves over the image; the
second argument is a function telling the browser what to do when the mouse moves
off the image. This code also adds a variable, oldSrc, for tracking the original src
attribute—the path to the file that appears when the page loads.

You aren’t limited to rolling over just an image, either. You can add a hover() func-
tion to any tag—a link, a form element, even a paragraph. In this way, any tag on
a page can trigger an image elsewhere on the page to change. For example, say you
want to make a photo swap out when you mouseover a page’s <h1> tag. Assume that
the target image is the same as the previous example. You just change your code as
shown here in bold:

 1 <script src="js/jquery-1.6.3.min.js"></script>
 2 <script>
 3 $(document).ready(function() {
 4 var newPhoto = new Image();
 5 newPhoto.src = 'images/newImage.jpg';
 6 var oldSrc=$('#photo').attr('src');
 6 var oldSrc = $('#photo').attr('src');
 7 $('h1').hover(
 8 function() {
 9 $('#photo').attr('src', newPhoto.src);
10 },
11 function() {
12 $('#photo').attr('src', oldSrc);
13 }); // end hover
14 }); // end ready
15 </script>

Tutorial: Adding Rollover Images
In this tutorial, you’ll add a rollover effect to a series of images (see Figure 7-1).
You’ll also add programming to preload the rollover images in order to eliminate
any delay between mousing over an image and seeing the rollover image. In addi-
tion, you’ll learn a new technique to make the process of preloading and adding the
rollover effect more efficient.

212 javascript & jquery: the missing manual

Tutorial: Adding
Rollover Images

Figure 7-1:
Make a navigation
bar, link, or simply
a photo more visu-
ally interactive with
rollovers.

Overview	of	the	Task
The tutorial file rollover.html (located in the chapter07 tutorial folder) contains a
series of six images (see Figure 7-2). Each image is wrapped by a link that points to a
larger version of the photo, and all of the images are wrapped in a <div> tag with an
ID of gallery. Basically, you’re trying to achieve two things:

• Preload the rollover image associated with each of the images inside the <div>.
• Attach a hover() function to each image inside the <div>. The hover()function

swaps the rollover image when the mouse moves over the image, then swaps back
to the original image when the mouse moves off.

213chapter 7: improving your images

Tutorial: Adding
Rollover Images

Figure 7-2:
The basic structure of the HTML for this tutorial
includes a <div> tag that surrounds a series of
links with images in them. To make swapping
in the new image easy, its file name is simply a
version of the original image’s file name.

From this description, you can see that both steps are tied to the images inside the
<div>, so one way to approach this problem is to first select the images inside the
<div>, then loop through the selection, preloading each images’ rollover and attach-
ing a hover() function.

Note: See the note on page 29 for information on how to download the tutorial files.

The	Programming
1. In a text editor, open the file rollover.html in the chapter07 folder.

This file already contains a link to the jQuery file, and the $(document).ready()
function (page 123). The first step is to select all of the images within the <div>
tag and set up a loop with the jQuery each() function discussed on page 147.

2. Click in the empty line after the $(document).ready() function and type
$(‘#gallery img’).each(function() {.
The selector #gallery img selects all tags within a tag that has the ID gal-
lery. jQuery’s each() function provides a quick way to loop through a bunch of
page elements, performing a series of actions on each element. The each() func-
tion takes an anonymous function (page 148) as its argument. It’s a good idea to
close (end) the anonymous and each functions before actually writing the code
that runs inside the function, so you’ll do that next.

214 javascript & jquery: the missing manual

Tutorial: Adding
Rollover Images

3. Press Return twice, and then type }); // end each to close the anonymous func-
tion, end the call to the each() function, and terminate the JavaScript state-
ment. Your code should now look like this:
1 <script src="../_js/jquery-1.6.3.min.js"></script>
2 <script>
3 $(document).ready(function() {
4 $('#gallery img').each(function() {
5
6 }); // end each
7 }); // end ready

At this point, the script loops through each of the images in the gallery, but
doesn’t actually do anything yet. The first order of business is to capture the
image’s src property and store it in a variable that you’ll use later on in the script.

Note: The JavaScript comments—// end each and // end ready—aren’t required for this script to work.
However, they do make it easier to identify what part of the script the line goes with.

4. Click inside the empty line (line 5 in step 3) and type:
var imgFile = $(this).attr('src');.

As described on page 149, you can use $(this) to refer to the current element in
the loop; in other words, $(this) will refer to each of the image tags in turn. The
jQuery attr() function (see page 146) retrieves the specified HTML attribute.
In this case, it retrieves the src property of the image and stores it in a variable
named imgFile. For example, for the first image, the src property is _images/
small/blue.jpg, which is the path to the image that appears on the page.
You can use that very src value to preload the image.

5. Hit Return to create a blank line, and then add the following two lines of code:
var preloadImage = new Image();
var imgExt = /(\.\w{3,4}$)/;
preloadImage.src = imgFile.replace(imgExt,'_h$1');

As described on page 209, to preload an image you must first create an image
object. In this case, the variable preloadImage is created to store the image object.
Next, we preload the image by setting the Image object’s src property.
One way to preload images (as discussed on page 210) is to create an array of
images you wish to preload, then loop through each item in the array, creating
an image object and adding the image’s source to the object. However, that ap-
proach can require a lot of work, since you need to know the path to each of the
rollover images and type those paths into the array.
In this example, you’ll use a more creative (and less labor-intensive method) to
preload images. You just have to make sure you store the rollover image in the
same location as the original image and name it similarly. For this web page,
each image on the page has a corresponding rollover image with an _h added to
the end of the image name. For example, for the image blue.jpg, there’s a rollover
image named blue_h.jpg. Both files are stored in the same folder, so the path to
both files is the same.

215chapter 7: improving your images

Tutorial: Adding
Rollover Images

Here’s the creative part: Instead of manually typing the src of the rollover to
preload it like this, preloadImage.src=‘_images/small/blue_h.jpg’, you can let
JavaScript figure out the src by simply changing the name of the original im-
age’s source so it reflects the name of the rollover. In other words, if you know
the path to the image on the page, then its rollover image simply has an h
added directly before the .jpg in that path. So _images/small/blue.jpg becomes
_images/small/blue_h.jpg, and _images/small/orange.jpg becomes _images/
small/orange_h.jpg.
That’s what the other two lines of code do. The first line—var imgExt = /(\.\
w{3,4}$)/;—creates a regular expression. A regular expression (which you’ll
learn about on page 430) is a pattern of characters that you can search for in a
string: for example, three numbers in a row. Regular expressions can be tricky,
but essentially this one matches a period followed by three or four characters at
the end of a string. For example, it will match both .jpeg in /images/small/blue
.jpeg and .png in /images/orange.png.
The next line—preloadImage.src = imgFile.replace(imgExt,‘_h$1’);—uses the
replace() method (see page 443) to replace the matched text with something else.
Here a .jpg in the path name will be replaced with _h.jpg, so images/small/blue
.jpg is changed to images/small/blue_h.jpg. This technique is a little tricky since
it uses a regular expression subpattern (see the box on page 444 for full details),
so don’t worry if you don’t exactly understand how it works.
Now that the rollover image is preloaded, you can assign the hover() event to
the image.

6. Hit Return and then add the code listed on lines 9–11 below:
 1 <script src="../_js/jquery-1.6.3.min.js"></script>
 2 <script>
 3 $(document).ready(function() {
 4 $('#gallery img').each(function() {
 5 var imgFile = $(this).attr('src');
 6 var preloadImage = new Image();
 7 var imgExt = /(\.\w{3,4}$)/;
 8 preloadImage.src = imgFile.replace(imgExt,'_h$1');
 9 $(this).hover(
10
11); // end hover
12 }); // end each
13 }); // end ready

jQuery’s hover() function is just a shortcut method of applying a mouseover and
mouseout event to an element (see page 157). To make it work, you pass two
functions as arguments. The first function runs when the mouse moves over the
element—in this case, the image changes to the rollover. The second function
runs when the mouse moves off the element—here, the rollover image swaps
back to the original image.

7. In the empty line (line 9 in step 6), add the following three lines of code:

216 javascript & jquery: the missing manual

Tutorial: Photo
Gallery with Effects

function() {
 $(this).attr('src', preloadImage.src);
},

This first function simply changes the src property of the current image to the
src of the rollover image. The comma at the end of the last line is required be-
cause the function you just added is acting as the first argument in a call to the
hover() function—a comma separates each argument passed to a function.

8. Finally, add the second function (lines 13–15 below). The finished script
should look like this:
 1 <script src="../_js/jquery-1.6.3.min.js"></script>
 2 <script>
 3 $(document).ready(function() {
 4 $('#gallery img').each(function() {
 5 var imgFile = $(this).attr('src');
 6 var preloadImage = new Image();
 7 var imgExt = /(\.\w{3,4}$)/;
 8 preloadImage.src = imgFile.replace(imgExt,'_h$1');
 9 $(this).hover(
10 function() {
11 $(this).attr('src', preloadImage.src);
12 },
13 function() {
14 $(this).attr('src', imgFile);
15 }
16); // end hover
17 }); // end each
18 }); // end ready

This second function simply changes the src attribute back to the original im-
age. In line 5, the path to the image originally on the page is stored in the vari-
able imgFile. In this function (line 14), you access that value again to set the src
back to its original value. Save the page, view it in a web browser, and mouse
over each of the black and white images to see them pop into full color.

Tutorial: Photo Gallery with Effects
Now you’ll expand on the last tutorial to create a single-page photo gallery. You’ll be
able to load a larger image onto the page when a visitor clicks a thumbnail image (see
Figure 7-3). In addition, you’ll use a couple of jQuery’s effect functions to make the
transition between larger images more visually interesting.

217chapter 7: improving your images

Tutorial: Photo
Gallery with Effects

Figure 7-3:
The finished photo
gallery page. Clicking
a thumbnail makes
a larger image fade
into view and the
current image fade
out. The completed
version of this tutorial
file, complete_
gallery.html, is in the
chapter07 folder.

Overview	of	Task
The way the gallery works is pretty straightforward—click a thumbnail to see a
larger image. However, this tutorial shows you how to add a few features that make
the presentation more interesting by using fade effects to swap larger images in and
out of the page.

Another important technique you’ll use here is unobtrusive JavaScript. That simply
means that users who have JavaScript turned off will still be able to access the larger
versions of the photos. To achieve that, each thumbnail image is wrapped in a link
that points to the larger image file (see Figure 7-4). For those without JavaScript,
clicking the link exits the current web page and follows the link to load the larger
image file. It won’t look fantastic, since the visitor has to exit the gallery page and will
see just the single larger image, but the photos will at least be accessible. For folks
who have JavaScript turned on, clicking a link will make the larger image fade into
view on the page.

218 javascript & jquery: the missing manual

Tutorial: Photo
Gallery with Effects

Figure 7-4:
The basic structure of the photo gallery.
All of the thumbnail images are wrapped
in links that point to the larger version of
the photo. Clicking each link will load the
larger image inside a <div> tag with the ID
of photo.

<div id="gallery">

<div id="photo">

All of the action occurs when the link is clicked, so this script uses the link’s click
event to achieve the following steps:

• Stop the default behavior of the link. Normally, clicking a link takes you to
another page. On this page, clicking the link around a thumbnail exits the web
page and displays a larger image. Since you’ll use JavaScript to display the im-
age, you can add some JavaScript code to prevent the browser from following
that link.

• Get the href value of the link. The link actually points to the larger image, so by
retrieving the link’s href, you also get the path to the larger image file.

• Create a new image tag to insert into the page. This image tag will include the
path from the href value.

• Fade the old image out while fading the new image in. The current image fades
out of view as the large version of the clicked thumbnail fades into view.

The tutorial includes a few additional nuances, but these four steps cover the basic
process.

The	Programming
This tutorial expands on the previous one, but the starting web page has been reor-
ganized a little: There’s a new set of thumbnails and they are now in a left column,
and a <div> tag with an ID of photo has been added to the page (see Figure 7-4).

Note: See the note on page 29 for information on how to download the tutorial files.

219chapter 7: improving your images

Tutorial: Photo
Gallery with Effects

1. In a text editor, open the file gallery.html in the chapter07 folder.
This file contains the programming from the previous tutorial, plus a new <div>
tag to display the large version of each thumbnail image. Since the process of
displaying a gallery image is triggered by clicking one of the links wrapped
around the thumbnail images, the first step is to create a selection of those links
and add the click event to each.

2. Locate the JavaScript comment that reads “insert new programming below
this line” and add the following code:
$('#gallery a').click(function(evt) {

}); // end click

The selector #gallery a selects all link tags inside another tag with the ID gallery.
The .click is a jQuery function for adding an event handler (see page 162 if you
need a refresher on events). Also, the code passes an anonymous function to the
click event (as mentioned on page 173, functions that are executed in response
to an event automatically have the event object passed to them). In this case,
the variable evt stores that event object. You’ll use it in the next step to stop the
browser from following the clicked link.

3. Between the two lines of code you added in step 2, type evt.preventDefault();.
Normally, clicking a link makes the web browser load whatever the link points
to (a web page, graphic file, PDF document, and so on). In this case, the link is
just there so that people who don’t have JavaScript turned on will be able to go
to a larger version of the thumbnail image. To prevent the web browser from
following the link for those who have JavaScript enabled, you run the event
object’s preventDefault() function (see page 175).
Next, we’ll get the href attribute for the link.

4. Hit Return to create a new, blank line, and then add the bold line of code
below:
$('#gallery a').click(function(evt) {
 evt.preventDefault();
 var imgPath = $(this).attr(‘href’);
}); // end click

Here, $(this) refers to the element that’s clicked—in other words, a link. A link’s
href attribute points to the page or resource the link goes to. In this case, each
link contains a path to the larger image. That’s important information, since
you can use it to add an image tag that points to the image file. But before you
do that, you need to get a reference to the large image that’s currently displayed
on the page. After all, you need to know what it is so you can fade it out of view.

Tip: You’ll see that each line of code inside the click() event in step 4 is indented. That’s optional, but it
helps make the code more readable, as described in the box on page 49. Many programmers use two
spaces (or a tab) for each level of indentation.

220 javascript & jquery: the missing manual

Tutorial: Photo
Gallery with Effects

5. Hit Return and type var oldImage = $(‘#photo img’);.
The variable oldImage holds a jQuery selection containing the tag inside
the photo <div> (see Figure 7-4). Now it’s time to create a tag for the new image.

6. Hit Return again and add var newImage = $(‘’); to
the script.
There are quite a few things going on here. jQuery lets you select an element
that’s in the page’s HTML. For example, $(‘img’) selects all images on the page.
In addition, the jQuery object can add a new element to the page. For example,
$(‘<p>Hello</p>’) creates a new paragraph tag containing the word Hello. This
line creates a new tag and stores it in a variable named newImage.
Since the jQuery object expects a string as an argument (‘<p>Hello</p>’, for
example), this line of code concatenates or combines several strings to make one.
The first string (surrounded by single quotes) is <img src=”; the second string
is stored in the variable imgPath (which you created in step 4) and is the path
to the image file (for example, ../_images/large/slide1.jpg); the third string (also
surrounded by single quotes) is ”>. Taken altogether, they add up to an HTML
tag: . When the script passes it to the
jQuery object like this, $(‘’), the browser
creates a page element. It isn’t displayed on the page yet, but the browser is ready
to add it to the page at anytime.

7. Add the code listed below on lines 6–8 so the code you’ve added so far looks
like this:
1 $('#gallery a').click(function(evt) {
2 evt.preventDefault();
3 var imgPath = $(this).attr('href');
4 var oldImage = $('#photo img');
5 var newImage = $('');
6 newImage.hide();
7 $('#photo').prepend(newImage);
8 newImage.fadeIn(1000);
9 }); // end click

In line 6, the newly created image (which is stored in the variable newImage) is
hidden using the hide() function described on page 187. This step is necessary
because if you just added the image tag created in line 5, the image would be
immediately visible on the page—no cool fade-in effect. So you first hide the
image, and then add it to the page inside the photo <div> (line 7). The prepend()
function (described on page 139) adds HTML inside a tag. Specifically, it adds
the HTML at the very beginning of the tag. At this point, there are two images
on the page inside the photo <div>—Figure 7-5 shows how one image can sit on
top of the other. The image on top is invisible, but in line 8, the fadeIn() function
makes the image slowly fade in over the course of 1,000 milliseconds (1 second).
Now it’s time to make the original image fade out.

221chapter 7: improving your images

Tutorial: Photo
Gallery with Effects

Figure 7-5:
To achieve the effect where two photos ap-
pear in the same spot on the page, but one
photo fades in and another fades out, you
need to use some creative CSS. Absolute po-
sitioning lets an element sit above the page,
and even on top of another element. In this
case, both images are absolutely positioned
within the <div> tag, making them float one
on top of the other. The style sheet embed-
ded in the <head> of gallery.html file
included in the chapter07 folder has all the
CSS required—make sure to check out the
#photo img style. In addition, the tag contain-
ing the photos needs a position of relative, in
order to allow the photos to be positioned in
relation to that spot on the page.

<div id="photo">

</div>

1

2

3

New image
(fade in)

Old image
(fade out)

8. Press Return and then add these three lines of code:
oldImage.fadeOut(1000,function(){
 $(this).remove();
}); // end fadeout

In step 5, you created a variable named oldImage and stored a reference to the
original image on the page into it. That’s the image we want to fade out, so you
apply the fadeOut() function. You pass two arguments to the function: The first
is the duration of the effect—1,000 milliseconds (1 second); the second is a call-
back function (as described on page 196 in Chapter 6). The callback function
runs after the fade out effect finishes, and removes the tag for that image.

Note: The remove() function is discussed on page 419. It actually removes the tag from the DOM, which
erases the HTML from the browser’s memory, freeing up computer resources. If you didn’t take this step,
each time your visitor clicks a thumbnail, a new tag would be added (see step 7), but the old one
would simply be hidden, not deleted. You’d end up with lots and lots of hidden tags still embed-
ded in the web page, slowing down the responsiveness of the web browser.

There’s one final step—loading the first image. Currently the <div> tag where
the photo goes is empty. You could type an tag in that spot, so when
the page loads there’d be a larger image for, say, the first thumbnail. But why
bother—you’ve got JavaScript!

222 javascript & jquery: the missing manual

Advanced Gallery
with jQuery
FancyBox

9. Add one last line after the end of the click() function (line 13 below), so your
completed code looks like this:
 1 $('#gallery a').click(function(evt) {
 2 evt.preventDefault();
 3 var imgPath = $(this).attr('href');
 4 var oldImage = $('#photo img');
 5 var newImage = $('');
 6 newImage.hide();
 7 $('#photo').prepend(newImage);
 8 newImage.fadeIn(1000);
 9 oldImage.fadeOut(1000,function(){
10 $(this).remove();
11 }); // end fadeout
12 }); // end click
13 $('#gallery a:first').click();

This last statement has two parts. First the selector—#gallery a:first—selects just
the first link only in the gallery <div>. Next is the click() function. So far, you’ve
used jQuery’s click() function to assign a function that runs when the event
occurs. However, if you don’t pass any arguments to an event function, jQuery
simply triggers that event, causing any previously defined event handlers to run.
So, this line triggers a click on the first link that makes the web browser run the
function that you created earlier in lines 1–11. That is, it makes the larger image
for the first thumbnail fade into view when the page loads.
Save the page and preview it in a web browser. Not only do the thumbnails
change color when you mouse over them, clicking a thumbnail makes its associ-
ated large image fade into view. (If you’re having trouble with your code, the file
complete_gallery.html contains a working copy of the script.)

Advanced Gallery with jQuery FancyBox
Displaying a gallery of photos is such a common task that you’ll find dozens of dif-
ferent ways to show off your imagery. One very popular technique dims the web page
and displays the larger version of the thumbnail as if it were floating on top of the
browser window (see Figure 7-6). The most well-known version of this method is
a JavaScript program called Lightbox (www.huddletogether.com/projects/lightbox2/).
There have been many imitations of the original, as well as several written as jQuery
plug-ins. This section uses the powerful FancyBox jQuery plug-in (http://fancybox
.net/), which is easy to use and customize. With just a single line of code, FancyBox
creates a spectacular way to present images as part of a portfolio, gallery, or slideshow.

Note: Before continuing, you might want to open the file complete_fancybox.html in the chapter07
folder included with this book’s tutorial files. It has a working demo of FancyBox. Watching it in action first
will probably make the rest of this section easier to understand.

223chapter 7: improving your images

Advanced Gallery
with jQuery

FancyBox

Figure 7-6:
The FancyBox jQuery
plug-in, created by
Janis Skarnelis, gives
you an easy way to
create an attractive,
single-page photo
gallery. You can even
set up FancyBox
so that visitors can
navigate through
a series of photos
by clicking a Next
or Previous button
that appears when
you mouse over the
image. In addition,
you’re not limited to
just photos. You can
pop open YouTube
video players, or
embed regular HTML
content (even content
from other websites)
using FancyBox.

The	Basics
FancyBox is very easy to use—you just need to set up your web page with links to
the images you wish to display, attach .css and .js files to the page, and add one line
of code to call the light box into action.

1. Set up your gallery page.
There’s not really much you need to do—just add links to the larger images you
wish to display on the page. These could be links added to thumbnail images, so
when the thumbnail is clicked, the larger image appears (that’s how the gallery
you programmed in the previous tutorial worked). The important thing to re-
member is that the link points to a graphic file—a .png, .jpeg, or .gif file—not to
a web page. (On page 245, though, you’ll learn how to use FancyBox to display
non-image content like other web pages and videos of Flash movies).
In addition, you need a way to identify just the gallery links (as opposed to other
links on the page). One way is to wrap the links in a <div> tag with a specific
ID—gallery, for example. Then you can target just those links with a selector
like ‘#gallery a’. Another approach is to add specific class names to each gallery
link: for example, . Then you can
target those links with a selector like ‘a.gallery’. This last method is handy if the
links are scattered around the page and aren’t contained in a single <div>.

224 javascript & jquery: the missing manual

Advanced Gallery
with jQuery
FancyBox

Tip: To add a caption to a photo, just supply a title attribute to the <a> tag that links to the large image.
For example:

2. Download the FancyBox files and put them into your site.
You can find the files at http://fancybox.net. They’re also provided with the tuto-
rial files for this book in a folder named fancybox in the chapter07 folder. A good
approach is to simply copy the fancybox folder from the tutorial folder to your
own website (the root folder’s a good place for it). There are a handful of files
you’ll need: a JavaScript file, a CSS file, and several graphics files:

• The JavaScript file is named something like jquery.fancybox-1.3.4.js,
where 1.3.4 represents a version number. You’ll also find a minified (or
compressed) version of the file named jquery.fancybox-1.3.4.min.js in the
fancybox folder in the chapter07 tutorials folder. You can place this file
anywhere in your site, but it’s easiest to keep it in the fancybox folder with
the other files.

• The CSS file, jquery.fancybox-1.3.4.css, contains the CSS that formats dif-
ferent aspects of the lightbox effect, such as drop shadows, the Next, Pre-
vious, and Close buttons, and the appearance of captions. Since this file
references many different image files (fancybox.png, fancy_title_main.png,
and so on), it’s best to keep this CSS file in the same folder as those images
(that’s one reason it’s good to keep all the FancyBox-related files together
in one folder).

• FancyBox also requires a bunch of graphic files: Some of these files are
specifically used to overcome IE6 bugs, while others are used to add visual
elements like a drop shadow, a graphic box for captions, and images for
navigation buttons. You’ll read more about the different files on page 226.

3. Attach the external style sheet to your page.
jQuery FancyBox uses some fancy CSS to achieve the dark, transparent overlay
effect and display the pop-up image. Attach this file as you would any CSS file.
For example:
<link href="fancybox/jquery.fancybox-1.3.4.css".css" rel="stylesheet">

Most JavaScript programmers place any style sheet information before their
JavaScript programming—some JavaScript programs depend on having the
style sheet information available first, in order for the program to work cor-
rectly. That’s especially true of many jQuery plug-ins, so get in the habit of placing
all style sheets before JavaScript files and programs.

4. Attach the JavaScript files.
jQuery FancyBox gets most of its power from the jQuery library (no surprise),
so you must first attach the jQuery file to the page (see page 122 for a recap of
this procedure). Also, the FancyBox JavaScript file (like any JavaScript that uses
jQuery) must be attached after the jQuery file. For example:

225chapter 7: improving your images

Advanced Gallery
with jQuery

FancyBox
<script src="js/jquery-1.6.3.min.js"></script>
<script src="fancybox/jquery.fancybox-1.3.4.js"></script>

In addition, FancyBox can use the easing methods described on page 194 to
control how the larger images zoom into or out of the page. If you wish to use
any easing method besides jQuery’s standard swing and linear, then you must
attach the easing plug-in as well. For example:
<script src="js/jquery-1.6.3.min.js"></script>
<script src="js/jquery.easing.1.3.js"></script>
<script src="fancybox/jquery.fancybox-1.3.4.js"></script>

5. Add a <script> tag, the jQuery ready() function, and call FancyBox.
Believe it or not, steps 1–4 above are the hardest part of the whole process. Get-
ting FancyBox to work requires just a single line of JavaScript. Of course, as you
read on page 169, you should put that code inside a jQuery ready() function,
so the browser has processed the HTML and is ready to manipulate the DOM.
For example:
<script>
$(document).ready(function() {
 $('#gallery a').fancybox();
});
</script>

The fancybox() function must be applied to just the links that point to the image
files you wish to display. You use a jQuery selector ($(‘#gallery a’), for example)
to tell FancyBox which links to use: In this example, any <a> tag inside another
tag with an ID of gallery becomes part of the FancyBox effect. As mentioned
in step 1, you need to set up your HTML so you can use jQuery to identify the
specific links that make up your light box.
And that’s it. Now, when you click each of the gallery links, a transparent back-
ground appears over the page, and a large version of the image appears in the
middle of the window.

Creating	a	Gallery	of	Images
Normally, when you apply FancyBox to a collection of links, each thumbnail is treat-
ed like a separate, unrelated image. In other words, if you apply FancyBox to a col-
lection of links, to see the larger version of each image, your visitor first has to click
a link to open a larger image, close that larger image by clicking a close button or
(anywhere on the page), and then click a different thumbnail to see a larger image,
and so on and so on. This constant opening and closing of images can be annoying
and time consuming.

A better approach is to treat a collection of thumbnails and links as a unified gallery.
The visitor clicks a thumbnail to open a larger version of the image, and then clicks
Next or Previous buttons on the larger image to jump back and forth among all the
larger images in the gallery. The FancyBox example pictured in Figure 7-6 works this
way; notice the Next button (circled).

226 javascript & jquery: the missing manual

Advanced Gallery
with jQuery
FancyBox

To create a gallery of related images, simply add the rel attribute to the <a> tag and
assign the same value for each image in the gallery. For example:

With the above code, if you apply the FancyBox function to these three links, then
the larger images will be considered part of the same gallery so you can jump back
and forth between the images without needing to first close a larger image and then
click a thumbnail. (You’ll see an example of this in the tutorial on page 231.)

Customizing	FancyBox
While the general look of the FancyBox effect is really nice, you may want to tinker
a bit with its appearance. You can customize a variety of different parts of the Fancy-
Box look, including the buttons that let you close the FancyBox window or navigate
to the previous and next images; you can also change the color and opacity of the
transparent background that overlays the page or change the background color of
the caption box and picture frame. Some of the changes involve providing different
options to the FancyBox function, while other changes require you to make changes
directly to the CSS file.

FancyBox options
The FancyBox plug-in lets you supply custom options that affect the appearance of
the light box effect. Basically, you pass a JavaScript object literal (see page 145) to
the FancyBox function containing the names of the options you wish to set and the
values you wish to set them to. For example, to change the background color and
opacity of the background placed over the page, you can pass an object literal with
your new settings to FancyBox like this:

$('#gallery a').fancybox({
 overlayOpacity: .5,
 overlayColor: '#F64',
 transitionIn: 'elastic',
 transitionOut: 'elastic',
});

In this example, the color of the overlay is set to a bright red (#F65), and its opac-
ity is set to 50% (.5). Also, the in and out transitions are set to elastic, which affects
how the larger image appears on the screen: In this case, the elastic setting makes
the larger image zoom into view when the thumbnail is clicked, and zoom out of
view when the Close button (or any other place on the page) is clicked (normally the
larger image just appears and disappears without any animation effect).

227chapter 7: improving your images

Advanced Gallery
with jQuery

FancyBox
jQuery FancyBox accepts a lot of different options (visit http://fancybox.net/api/ for
the complete list), but here are the most useful:

• overlayColor. The background color that covers the page while FancyBox dis-
plays an image. This option accepts a hex color value like #FF0033. If you don’t
set this option, the plug-in uses a gray color, #666 to be specific. Set this option
like this:
overlayColor : '#ff6346'

• overlayOpacity. The opacity of the overlay. This option sets how much of the
page below the overlay should show through. You specify a number from 0 to
1: .5, for example, is 50% opacity. If you don’t want to be able to see through the
overlay—for example, you want to completely cover the rest of the web page
while the image appears—set this option to 1. If you don’t set this option,
FancyBox sets the opacity to 30% (.3). Set this value to 0 to hide the overlay.
overlayOpacity : .5

• padding. The space around the image; it creates a visual border around the
image. Normally, FancyBox sets the padding to 10 pixels, but you can change
this to any value you wish. A value of 0 completely removes the border around
a pop-up photo (see page 231 for instructions on how to change the color of
the border around the image). Simply supply a number (FancyBox assumes it’s
a pixel value so you don’t need to include the px you’d normally add in CSS):
padding: 5

• changeSpeed. When you move from image to image in a FancyBox-powered
page, the box containing the image is animated as it changes size from the di-
mensions of the current image to match the dimensions of the next image. You
can control the speed of this transition by setting this option. The default is 300,
meaning 300 milliseconds, or slightly less than half of a second. For example:
changeSpeed : 500

• transitionIn and transitionOut. These two options control how the larger, pop-
up image appears on the screen. The fade setting makes the larger image fade
into view on the screen. That’s also how FancyBox normally makes a pop-up
image appear. The none setting makes the image pop abruptly onto the screen.
Finally, the elastic option is the most visually fun: It makes the image zoom onto
the page. In conjunction with an easing method (see the next option), you can
create some very dynamic (and potentially annoying) visuals. The transitionIn
option controls how the larger image appears on the screen, while the transition-
Out option controls how the image disappears. You can have different settings
for each:
transitionIn : 'elastic',
transitionOut : 'none'

• easingIn and easingOut. These two options work when the transitionIn and
transitionOut options are set to elastic (see the previous bullet point). They take
an easing method such as jQuery’s swing or linear options, or, if you’ve attached
the easing plug-in (page 194), you can use any of the easing methods supported
by that plug-in:

228 javascript & jquery: the missing manual

Advanced Gallery
with jQuery
FancyBox

easingIn : 'easeInBounce',
easingOut : 'easeOutSine'

• titlePosition. Normally, when you add a caption to an image (see the Note on
page 231), FancyBox places the caption inside a graphic box (a lozenge-shaped
image). You can change this graphic (see page 229), or simply not use it by set-
ting the titlePosition option to either outside (the caption appears below the
box containing the image), inside (the caption appears inside the white box sur-
rounding the image), or over (the caption appears over the bottom edge of the
photo). You set this option like this:
titlePosition: 'outside'

• cyclic. Normally, when you reach the last image in a gallery of images, only the
Previous button appears; and when you’re at the first image, only a Next button
appears. When you set the cyclic property to true—cyclic: true—visitors will be
able to jump to the first image when they reach the last image in the gallery by
pressing the Next button, and will be able to jump to the last image when view-
ing the first image by pressing the Previous button. In other words, this option
lets you cycle through the images continually without end.
cyclic : true

Here’s an example of how you might set these options. Say you are applying Fancy-
Box to a collection of links to create a navigable gallery of pop-up images. You want
to make the gallery endless, so when a visitor reaches the last photo, she can click the
Next button to jump back to the beginning of the gallery. Also, you want to remove
any border around the pop-up photos, make them zoom in and out of view, and po-
sition the captions below the bottom of each photo. You can do that with this code:

$('#gallery a').fancybox({
 cyclic : true,
 padding : 0,
 transitionIn : 'elastic',
 transitionOut : 'elastic'
 titlePosition : 'outside'
});

Styling FancyBox
FancyBox uses a combination of graphics and CSS to style its appearance. It uses im-
ages for the Close button, navigation buttons, and drop shadow that appear beneath
the pop-up image, as well as CSS styles to format the placement and size of those
controls. An animated loading graphic also displays as the larger image is retrieved.
You can adjust these graphics, but you first need to understand how FancyBox orga-
nizes its graphic files.

First, for all browsers except Internet Explorer 6, the main graphics are stored in a
single file: fancybox.png (see Figure 7-7). FancyBox uses a method known as CSS
sprites, which stores multiple images in a single file, but using CSS and the back-
ground-image property displays only a portion of that image in each instance. For
example, to display the Close button, FancyBox loads fancybox.png as a background
image into a link on the page, but sets the width and height of that link to 30 pixels,

229chapter 7: improving your images

Advanced Gallery
with jQuery

FancyBox
and shifts the image using the background-position property so that only the top-
right corner of the fancybox.png file appears. The reasoning behind this approach is
that by only loading a single file—fancybox.png—instead of separate files for each
control, your website will download more quickly and feel more responsive to visi-
tors. (You can find read more about the CSS sprites technique at http://css-tricks
.com/158-css-sprites/.

Figure 7-7:
You don’t need to use FancyBox’s option settings to
customize the look of your FancyBox. Simply replac-
ing the supplied graphics and altering the CSS file lets
you tweak the design to better match your site.

fancybox.png

40px

40px 30px

30px

30px

30px

30px

20px

20px

20px

20px

close button

previous button

next button

caption images

shadow nw corner

shadow sw corner

shadow ne corner

shadow se corner

loading
animation

In addition to graphics, FancyBox also includes styles in its external style sheet to
format different elements of its presentation. Here’s a run-down of the most common
elements and how to format them:

• The Close button. FancyBox uses a graphic Close button that appears at the
top-right corner of a pop-up image. The image is 30 pixels by 30 pixels and ap-
pears in the upper-right corner of the fancybox.png file. There are a couple of

http://css-tricks .com/158-css-sprites/
http://css-tricks .com/158-css-sprites/

230 javascript & jquery: the missing manual

Advanced Gallery
with jQuery
FancyBox

ways to modify this. If you’re not happy with the 30-pixel by 30-pixel size, you
can simply edit the fancybox.png file: Delete the 30×30 image in the top-right of
that file and replace it with a design of your own.
In the FancyBox stylesheet (the jquery.fancybox-1.3.4.css file included in the tu-
torial files), you can edit the #fancybox-close style for even greater control. In
this style, you can control the placement of the Close button (change the top and
right settings), the height and width of the button (change the height and width
properties), and even point to a different graphic file by editing the background
property.

IE6 Note: FancyBox uses special CSS styles to overcome bugs in Internet Explorer 6. The styles don’t
reference the fancybox.png file, but instead use different images for each of the controls. IE6 is a nearly
dead web browser, so you’re most likely safe to ignore it, but if you’re still worried and want to change the
appearance of the control graphics, then you need to edit the following image files: fancy_close.png (the
close button), fancy_nav_left.png (the previous button), fancy_nav_right.png (the next button), fancy_
loading.png (the animated loading image), fancy_title_main.png (for the center part of the caption
graphic), fancy_title_right.png (for the right edge of the caption graphic), and fancy_title_left.png (for the
left edge of the caption graphic). Or you can save yourself all this trouble and ignore IE6 altogether.

• The Previous and Next buttons. As with the Close button, the Previous and
Next buttons are images within the fancybox.png file (see Figure 7-7). You can
edit that file (make sure to stay within the 30×30 pixel boundary). You can also
use different graphic files and at different sizes by editing the styles for these two
controls: a group selector (#fancybox-left-ico, #fancybox-right-ico), which pro-
vides properties (like width and height) that are common to both controls, and
the individual styles (#fancybox-left-ico for the Previous button and #fancybox-
right-ico for the Next button), which set the image for the controls.

• The “loading” graphic. When a visitor clicks on a thumbnail to make a larger
image pop onto the page, the browser has to download that file. While it waits,
an animated image appears on the screen to indicate that image is being re-
trieved. This image is actually a series of “frames” in the fancybox.png file (see
Figure 7-7). Its 12 frames are 40 pixels tall by 40 pixels wide. To change this
image, you need to edit the fancybox.png file and create your own 12-frame
animation. The CSS style controlling which image is loaded and its width is the
#fancybox-loading div style. But if you want to control the placement, width,
and height of the image, you need to also edit the #fancybox-loading style. It’s a
lot of work, and since the normal “loading” graphic looks great, you may want
to avoid changing it.

• Drop shadows. The drop shadows that appear around the pop-up image are
generated by a bunch of individual image files, including a couple of parts of the
fancybox.png file. Editing these is complex and is best avoided. If you do make
separate graphic files for the various controls discussed in this list and edit the
CSS to point to those files, don’t delete the fancybox.png file—it supplies the
corners for the drop shadows.

231chapter 7: improving your images

Tutorial: FancyBox
Photo Gallery

• Border color around pop-up images. Normally, FancyBox displays a white
border around a pop-up image. As mentioned in the previous section, you can
control the size of that border by sending a padding value to the FancyBox func-
tion. However, to control its color, you need to edit the FancyBox style sheet.
Locate the style #fancybox-content and change its border color from #FFF to
whatever color you prefer.

• Color behind photos. When you create a gallery effect where a visitor can click
the previous and next buttons to jump from large image to large image, Fancy-
Box displays a background color as one image fades out and the next fades in.
This color is defined by the background property in the #fancybox-outer style.
It’s a good idea to have this value match whatever color you define for the border
color (previous bullet point).

• Captions. You can control the color, font, and size of captions by editing various
CSS Styles. The #fancybox-title style defines the font and font size of the cap-
tion, while the .fancybox-title-inside, .fancybox-title-outside, and .fancybox-
title-over styles affect the look of the caption based on its titlePosition setting
(discussed on page 228). For example, if you set the “titlePosition” option to
inside, the caption appears inside the border for the image. If you change the
border color (see above bullet point), then you should change the background
property on the .fancybox-title-inside style to match that border color. If you
don’t set the titlePosition option, FancyBox uses images inside the fancybox.png
file to generate a graphical caption box. It takes three slices of that image (one for
the left edge of the box, another for the middle section of the box, and a third for
the right edge of the box). To alter the images used, you can edit the following
styles: #fancybox-title-float-left, #fancybox-title-float-main, and #fancybox-title-
float-right.

Tip: FancyBox lets you customize the HTML used to display the captions in many different ways by creat-
ing a custom function. You can find out how and see more tips and tricks for using FancyBox at
http://fancybox.net/blog.

Tutorial: FancyBox Photo Gallery
Although FancyBox is really easy to use, it’s always helpful to have a step-by-step
tutorial showing you how it’s done. In this tutorial, you’ll take a page with a basic set
of thumbnail images and turn it into a fancy pop-up gallery.

Note: See the note on page 29 for information on how to download the tutorial files.

232 javascript & jquery: the missing manual

Tutorial: FancyBox
Photo Gallery

1. In a text editor, open the file fancybox.html in the chapter07 folder.
This file contains a simple group of thumbnail images. Each image is linked to
a larger version of the photo, and all of the thumbnails are contained within a
<div> tag with an ID of gallery.
The first step is to attach the CSS file used by FancyBox.

2. In the <head> of the document, locate the empty line below the <link> tag,
which attaches the site.css style sheet file (it’s the blank line that appears di-
rectly above the first <script> tag). On that line, type:
<link href="fancybox/jquery.fancybox-1.3.4.css" rel="stylesheet">

The jquery.fancybox-1.3.4.css file contains all of the styles used to format various
elements of the FancyBox interface, including the placement of the close button,
and the look of the photo caption text. Next, you need to attach the plug-in’s
JavaScript file. Notice that the page already has the jQuery and jQuery easing
(page 194) files attached.

3. On the blank line immediately after the <script> tag that attaches the jquery
.easing.1.3.js file to this page, type:
<script src="fancybox/jquery.fancybox-1.3.4.min.js"></script>

This JavaScript file is stored in the fancybox folder inside the chapter07 folder.
Since FancyBox requires a collection of files—JavaScript, CSS, and images—it’s
easiest to just keep them all in one place. That way you need only to copy the
fancybox folder from this tutorial to your own site to use FancyBox.
This page already has another <script> tag, complete with the jQuery ready()
function and the preloading/rollover magic you created in the first tutorial in
this chapter. You just need to add the fancybox() function and you’re good to go.

4. Click in blank line directly below $(document).ready(function() {, and type:
$('#gallery a').fancybox();

All of the links that point to larger images are contained inside a <div> tag with
the ID gallery, so $(‘#gallery a’) selects those, and the .fancybox() function applies
the FancyBox effect to the page.
Believe it or not, you’re done! Save the page and preview it in a web browser.
Click one of the thumbnail images to see the magic happen. Now you can see
why plug-ins are so useful—you don’t really have to do any programming to get
some fantastic effects!
Click the Close button or anywhere else on the page to make the large image
disappear. Click another thumbnail to see another larger image. One problem
with this setup is that each thumbnail is independent of the others. In other
words, in order to see another pop-up image, you need to first close the current
pop-up, then click a thumbnail. It would be nicer if, once one pop-up image ap-
pears, you could just navigate from one large photo to another. A simple change
to the HTML will do that.

5. Locate the first link inside the gallery <div>—<a href=“../_images/large/slide1
.jpg”>—and add rel=“gallery” so that the HTML looks like this:

233chapter 7: improving your images

Tutorial: FancyBox
Photo Gallery

The actual value you supply the rel attribute—gallery in this case—doesn’t
matter. What’s important is that the value be the same for every image you wish
to include in the group.

6. Add rel=“gallery” to each of the 5 remaining links inside the gallery div. Save
and preview the page.
Now, after you click one thumbnail, you can mouse over the right side of the
pop-up image to see a Next button. Click that button and you’ll jump to the next
photo in the group. Mouse over the left side to see the Previous button.
One thing that’s missing are captions for each photo. To add a caption, you don’t
need any JavaScript, just an HTML title attribute added to each <a> tag.

7. Locate the first link again—<a href=“../_images/large/slide1.jpg”
rel=“gallery”>—and add title=“Lotsa golf balls” to the tag, so it looks like this:

Save the file and preview it in a web browser. Click the first thumbnail on the
left—voila, the caption appears. Add title attributes to the other <a> tags in
this <div>. Now, you’ll tweak some of FancyBox’s default settings to customize
its look.

8. Change the code you added in step 4 by adding an object literal between the
fancybox() function’s parentheses. The new code is bolded below:
$('#gallery a').fancybox({
 overlayColor : '#060',
 overlayOpacity : .3
});

This code passes an object literal (page 145) to the fancybox() function. An object
literal is made up of a property name, followed by a colon and then a value. So
overlayColor is the name of an option for FancyBox (see page 227), and you’re
setting its value to ‘#060’. This particular option changes the background color
that appears between the page and the pop-up image. The overlayOpacity setting
controls how transparent the overlay is; in this case, .3 means 30% opacity.

Note: Object literals look kind of weird and have some strange rules. Make sure to add a comma after
each property/value pair for each pair except the last one. For example, the last line above overlayOpacity
: .3 must not have a comma at the end. However, if you add more options (as you will in step 10), you
must add a comma. You’ll find more information about object literals on page 145.

9. Save the page and preview it in a web browser.
Now when you click on a thumbnail, a greenish tint appears covering the page.
Next, you’ll adjust how the pop-up images pop onto the screen.

10. Change the code once again, by adding a few additional options. The new
code is bolded below:
$('#gallery a').fancybox({
 overlayColor : '#060',

234 javascript & jquery: the missing manual

Tutorial: FancyBox
Photo Gallery

 overlayOpacity : .3,
 transitionIn: 'elastic',
 transitionOut: 'elastic',
 easingIn: 'easeInSine',
 easingOut: 'easeOutSine',
 titlePosition: 'outside' ,
 cyclic: true
});

Don’t forget to add a comma at the end of overlayOpacity : .3. When you set
transitionIn and transitionOut properties to elastic, the pop-up image zooms
onto the page when you click a thumbnail and zoom off the page when you
close the pop-up image. The easingIn and easingOut options use the jQuery
easing plug-in (page 194) to control how the elastic in and out transitions ani-
mate. Finally, the cyclic option makes it so that visitors, once they get to the last
pop-up image in a group, can click the Next button to cycle back to the first
image in the group.

11. Save the page and preview it in a web browser.
Who says JavaScript is hard? The file complete_fancybox.html is a completed,
working version of the tutorial.

FancyBox is a fun and useful plug-in. As you’ll see in the next chapter, it’s not lim-
ited to just displaying images, either. You can also use it to display HTML, videos, or
complete web pages in a pop-up window on the page.

235

chapter
8

Improving Navigation

Links make the web go around. Without the instant access to information pro-
vided by linking from page to page and site to site, the web wouldn’t have
gotten very far. In fact, it wouldn’t be a web at all. Since links are one of the

most common and powerful pieces of HTML, it’s only natural that there are lots of
JavaScript techniques for enhancing how links work. In this chapter, you’ll learn the
basics of using JavaScript to control links, and how to open links in new windows
and in windows within a page.

Some Link Basics
You undoubtedly know a lot about links already. After all, they’re the heart of the
web, and the humble <a> tag is one of the first pieces of HTML a web designer
learns. Adding JavaScript to a page can turn a basic link into a supercharged gateway
of interactivity…but only if you know how to use JavaScript to control your links.
Once you’ve got the basics, later sections of this chapter will give you real-world
techniques for controlling links with JavaScript.

Selecting	Links	with	JavaScript
To do anything with a link on a web page, you must first select it. You can select all
of the links on a page, just one, or a particular group of related links—for example,
links that are grouped together in the same part of a page, or that share a certain
characteristic such as external links that point to other websites.

236 javascript & jquery: the missing manual

Some Link Basics

jQuery gives you great flexibility in selecting document elements. For example, the
code $(‘a’) creates a jQuery selection of all links on a page. Furthermore, jQuery lets
you refine your selections, so you can quickly select all the links within a particular
area of a page. For example, you can select all of the links contained inside a bulleted
list with an ID of mainNav like this: $(‘#mainNav a’). Likewise, you can use attribute
selectors (page 133) to select links whose HREF values (the paths to the files they
point to) match a certain pattern such as links that point to other sites, or that
point to PDF files (see “Opening External Links in a New Window” on page 238 for
an example).

And once you’ve used jQuery to select those links, you can use the jQuery functions
to work with those links. For example, you can loop through each link using the
each() function (page 147), apply a class to those links with the addClass() function
(page 142), or add event functions to them (page 162). You’ll see many examples of
what you can do to links later in this chapter.

Determining	a	Link’s	Destination
After you’ve selected one or more links, you may be interested in where they lead.
For example, in the slideshow you built on page 222, each link pointed to a larger
image; by retrieving the path, you used JavaScript to display that larger image. In
other words, you extracted the link’s href value and used that path to create a new
 tag on the page. Likewise, you can retrieve the href value that leads to another
web page and, instead of going to that page when you click the link, you can actually
display the new web page on top of the current page. (See page 245 to learn how to
do that.)

In each case, you need to access the href attribute, which is an easy process using
jQuery’s attr() function (page 146). For example, say you’ve applied an ID to the link
that leads back to a site’s home page. You can retrieve that link’s path like this:

var homePath = $('#homeLink').attr('href');

You’ll find this information handy in many instances. For example, say you want to
add the full URL of a link pointing outside of your site next to the link text itself. In
other words, suppose you have a link with the text “Learn more about bark beetles”
that points to http://www.barkbeetles.org/. Now suppose you’d like to change the text
on the page to read “Learn more about bark beetles (www.barkbeetles.org)” (so when
people print the page they’ll know where that link leads to).

You can do that easily with the following JavaScript:
1 $('a[href^="http://"]').each(function() {
2 var href = $(this).attr('href');
3 href = href.replace('http://','');
4 $(this).after(' (' + href + ')');
5 });

Note: The line numbers at left aren’t part of the code, so don’t type them. They’re just for examining the
code line by line.

237chapter 8: improving navigation

Some Link Basics

Line 1 selects all external links (page 146) then runs the each() function (page 147),
which simply applies a function to each link (in other words, it “loops” through the
list of links). In this case, lines 2–4 make up the function body. Line 2 retrieves the
link’s href of the link (for example, http://www.barkbeetles.org). Line 3 is optional—it
just simplifies the URL for display purposes by removing the http://, so the href vari-
able now holds something like www.barkbeetles.org (you can learn about JavaScript’s
replace() method on page 443). Finally, line 4 adds the contents of the variable href
(wrapped in parentheses) after the link: (www.barkbeetles.org), and line 5 closes
the function.

You can take this basic premise even further by creating a bibliography at the bot-
tom of the page listing all the links mentioned in the article. Instead of adding each
web address after each link, you list each web address at the bottom of the page in a
separate div.

Don’t	Follow	That	Link
When you add a click event to a link, you may not want the web browser to follow
its normal behavior of exiting the current page and loading the link’s destination.
For example, in the image gallery on page 216, when you click a link on a thumbnail
image, the page loads a larger image. Normally, clicking that link would exit the page
and show the larger image by itself on a blank page. However, in this case, instead of
following the link to the image, you stay on the same page, where the larger image
is loaded.

There are a couple of ways you can stop a link in its tracks—you can return a false
value or use jQuery’s preventDefault() function (page 175). For example, say you
have a link that takes a visitor to a login page. To make your site feel more responsive,
you want to use JavaScript to show a login form when the visitor clicks that link. In
other words, if the visitor’s browser has JavaScript turned on, when he clicks that
link, a form will appear on the page; if the browser has JavaScript turned off, clicking
the link will take the visitor to the login page.

There are several steps to achieve this goal:

1. Select the login link.
See the first part of this section on the previous page, if you need ideas for how
to do this.

2. Attach a click event.
You can use jQuery’s click() function to do so. The click() function takes another
function as an argument. That function contains the steps that happen when a
user clicks the link. In this example, only two steps are required.

3. Show the login form.
The login form might be hidden from view when the page loads—perhaps an
absolutely positioned <div> tag directly under the link. You can show the form
using the show() function or one of jQuery’s other show effects (see page 189).

238 javascript & jquery: the missing manual

Opening External
Links in a New
Window

4. Stop the link!
This step is the most important. If you don’t stop the link, the web browser will
simply leave the current page and go to the login web page.

Here’s how to stop the link using the “return false” method. Assume that the link
has an ID of showForm and the hidden <div> tag with the login form has an ID of
loginForm:

1 $('#showForm').click(function() {
2 $('#loginForm').fadeIn('slow');
3 return false;
4 });

Line 1 accomplishes both steps 1 and 2 above; line 3 displays the hidden form. Line
2 is the part that tells the web browser “Stop! Don’t follow that link.” You must put
the return false; statement as the last line of the function, because once the JavaScript
interpreter encounters a return statement, it exits the function.

You can also use jQuery’s preventDefault() function, like this:
1 $('#showForm').click(function(evt) {
2 $('#loginForm').fadeIn('slow');
3 evt.preventDefault();
4 });

The basic details of this script are the same as the one before it. The main differ-
ence is that the function assigned to the click event now accepts an argument—
evt—which represents the event itself (the event object is described on page 173).
The event has its own set of functions and properties—the preventDefault() function
simply stops any default behavior associated with the event: For a click on a link,
that’s loading a new web page.

Opening External Links in a New Window
Losing visitors is one of the great fears for any site that depends on readership. On-
line magazines that make money from ad revenue don’t want to send people away
from their site if they can help it; an e-commerce site doesn’t want to lose a poten-
tial customer by letting a shopper click a link that leaves the site behind; and while
displaying a portfolio of completed websites, a web designer might not want to let a
potential client leave her site while viewing one of the designer’s finished projects.

Many sites deal with these fears by opening a new window whenever a link to an-
other site is clicked. That way, when the visitor finishes viewing the other site and
closes its window, the original site is still there. HTML has long provided a method
of doing that using a link’s target attribute—if you set that attribute to _blank, a web
browser knows to open that link in a new window (or, with browsers that use tabs,
open the link a new tab).

Note: There’s a quite a bit of debate amongst web usability experts about whether the strategy of open-
ing new windows is a good or bad idea. For example, see www.useit.com/alertbox/990530.html.

239chapter 8: improving navigation

Opening External
Links in a New

Window
Manually adding target=“_blank” to each link that points outside your site takes a
long time and is easy to forget. Fortunately, using JavaScript and jQuery, there’s a
quick, easy method to force web browsers to open external links (or any links you
want) in a new window or browser tab. The basic process is simple:

1. Identify the links you wish to open in a new window.
In this chapter, you’ll use a jQuery selector (page 129) to identify those links.

2. Add the target attribute with a value of _blank to the link.
You might be thinking, “Hey, that’s invalid HTML. I can’t do that.” Well, first,
it’s only invalid for the strict versions of HTML 4.01 and XHTML 1.0, so it’s fine
for any other document type, including the new HTML5 doctype. Second, your
page will still validate, since an HTML validator (for example, http://validator
.w3.org/) only analyzes the actual HTML code in the web page file and not any
HTML that JavaScript adds. And, lastly, every browser understands the target
attribute, so you know that the link will open in a new window, regardless of the
standards for strict document types.

In jQuery, you can complete the previous two steps in one line of code:
$('a[href^="http://"]').attr('target','_blank');

The jQuery selector—$(‘a[href^=”http://”]’)—uses an attribute selector (page 133)
to identify <a> tags that begin with http:// (for example, http://www.yahoo.com). The
selector identifies all of these types of links and then uses the jQuery attr() function
(page 146) to set the target attribute to _blank for each link. And that’s it!

If you use absolute paths to specify links to files on your own site, you need one more
step. For example, if your site’s address is www.your_site.com, and you link to other
pages or files on your site like this: http://www.your_site.com/a_page.html, then the
previous code also forces those links to open in a new window. If you don’t want to
open up a new window for every page of your site (your poor visitors), you need
code like the following:

var myURL = location.protocol + '//' + location.hostname;
$('a[href^="http://"]').not('[href^="'+myURL+'"]').attr('target','_blank');

This code first specifies the URL for your site and assigns it to a variable—myURL.
The URL of your site is accomplished with a little bit of help from the browser’s
window object. A browser knows the protocol used for accessing a URL—http:, or
for secured sites, https:. It’s stored in the location object’s protocol property. Likewise,
the name of the site—www.sawmac.com, for example—is stored in the hostname
property. So the JavaScript location.protocol + ‘//’ + location.hostname generates a
string that looks like http://www.sawmac.com. Of course, the hostname in this case
changes depending upon where the page with this JavaScript code comes from. For
example, if you put this code on a page that comes from http://www.your_site.com,
then when someone views the page from that site, location.hostname would be www
.your_site.com.

http://validator.w3.org/
http://validator.w3.org/
www.your_site.com
www.your_site.com

240 javascript & jquery: the missing manual

Creating New
Windows

The second line of code starts with a jQuery selector, which retrieves all links that
start with http://. Then, the not() function removes any links start with your URL—
in this example, links that point to http://www.sawmac.com. (The not() function is a
useful way of excluding some elements from a jQuery selection—to learn about it,
visit http://api.jquery.com/not.)

So to actually use this code on a page, you just link to the jQuery file, add the
$(document).ready() function (page 169), and then insert the previous code inside
like this:

<script src="js/jquery-1.6.3.min.js"></script>
<script>
$(document).ready(function() {
 var myURL = location.protocol + '//' + location.hostname;
 $('a[href^="http://"]').not('[href^="'+myURL+'"]').attr('target','_blank');
});
</script>

Another approach would be to create an external JavaScript file (see page 27); in that
file, create a function that runs the code to make external links open in a new win-
dow; attach that file to the page; and then call the function on that page.

For example, you could create a file named open_external.js with the following code:
function openExt() {
 var myURL = location.protocol + '//' + location.hostname;
 $('a[href^="http://"]').not('[href^="'+myURL+'"]').attr('target','_blank');
}

Then add the following code to each page on your site that you’d like to apply this
function to:

<script src="js/jquery-1.6.3.min.js"></script>
<script src="js/open_external.js"></script>
<script>
$(document).ready(function() {
 openExt();
 // add any other JavaScript code to the page
});
</script>

The benefit of using an external file is that if you’ve used this function throughout
your site on hundreds of pages, you can easily update the script so it’s fancier—for
example, you can later change the openExt() function to open external pages in a
frame within the current page (see page 245 for how to do that). In other words, an
external .js file makes it easier for you to keep your scripts consistent across your
entire site.

Creating New Windows
Web browsers let you open new windows and customize many of their properties,
like width and height, onscreen placement, and even whether they display scrollbars,
menus, or the location (address) bar. The basic technique uses the open() method,
which follows this basic structure:

241chapter 8: improving navigation

Creating New
Windows

open(URL, name, properties)

The open() method takes three arguments. The first is the URL of the page you wish
to appear in the new open window—the same value you’d use for the href attribute
for a link (http://www.google.com, /pages/map.html, or ../../portfolio.html, for exam-
ple). The second argument is a name for the window, which can be any name you’d
like to use; follow the same naming rules used for variables as described on page 46.
Finally, you can pass a string containing the settings for the new window (its height
and width, for example).

In addition, when opening a new window, you usually create a variable to store a
reference to that window. For example, if you want to open Google’s home page in a
new window that’s 200 pixels square, you can write this code:

var newWin= open('http://www.google.com/', ↵
'theWin','height=200,width=200');

Note: The ↵ symbol at the end of a line of code indicates that the next line should really be typed as part
of the first line. But since a really long line of JavaScript code won’t fit on this book’s page, it’s broken up
over two lines.

This code opens a new window and stores a reference to that window in the variable
newWin. The section “Use the Window reference” on the next page describes how to
use this reference to control the newly opened window.

Note: The name you provide for the new window (‘theWin’ in this example) doesn’t do much. However,
once you’ve provided a name, if you try to open another window using the same name, you won’t get
a new window. Instead, the web page you request with the open() method just loads in the previously
created window with the same name.

Window	Properties
Browser windows have many different components: scroll bars, resize handles, tool-
bars, and so on (see Figure 8-1). In addition, windows have a width and height and
a position on the screen. You can set most of these properties when creating a new
window by creating a string containing a comma-separated list of each property
and its setting as the third argument for the open() method. For example, to set the
width and height of a new window and to make sure the location bar appears, you
can write this:

var winProps = 'width=400,height=300,location=yes';
var newWin = open('about.html','aWin',winProps);

242 javascript & jquery: the missing manual

Creating New
Windows

Figure 8-1:
The different properties of a browser win-
dow like scroll bars, toolbars, and resize
handles are collectively called a browser’s
chrome. Each browser has its own take
on these properties, and web developers
have little control over how they work or
look. Don’t despair—when you create a
new window using JavaScript, you can
turn off some of these features.

You set the properties that control the size or position of the window using pixel
values, while the other properties take either the value yes (to turn on that property)
or no (to turn off that property). In the case of any of the yes/no properties (like
toolbar or location), if you don’t specify a property value, the web browser turns that
property off (for example, if you don’t set the location property, the web browser
hides the location field that normally appears at the top of the window). Only height,
width, left, top, and toolbar work consistently across browsers. As noted in the fol-
lowing list, some browsers ignore some of these properties entirely, so if you create
pop-up windows with JavaScript, make sure to test on every browser you can.

• height dictates the height of the window, in pixels. You can’t specify percentage
values or any other measurement besides pixels. If you don’t specify a height,
the web browser matches the height of the current window.

• width specifies the width of the window. As with height, you can only use pixels,
and if you leave this property out, the web browser matches the width of the
current window.

• left is the position, in pixels, from the left edge of the monitor.
• top is the position, in pixels, from the top edge of the monitor.
• scrollbars appear at the right and bottom edges of a browser window whenever

a page is larger than the window itself. To completely hide the scrollbar, set
this property to no. You can’t control which scrollbar is hidden (it’s either both or
neither), and some browsers, like Chrome and Safari, won’t let you hide scrollbars.

• status controls the appearance of the status bar at the bottom of the window.
Firefox and Internet Explorer normally don’t let you hide the status bar, so it’s
always visible in those browsers.

243chapter 8: improving navigation

Creating New
Windows

• toolbar sets the visibility of the toolbar containing the navigation buttons, book-
mark button, and other controls available to the particular browser. On Safari,
the toolbar and location settings are the same: Turning on either one displays
both the toolbar buttons and the location field.

• location specifies whether the location field is visible. Also known as the ad-
dress bar, this field displays the page’s URL and lets visitors go to another page
by typing a new URL. Opera, Internet Explorer, and Firefox don’t let you hide a
page’s location entirely. This feature is supposed to stop nefarious uses of Java-
Script like opening a new window and sending you off to another site that looks
like the site you just left. Also, Safari displays the toolbars as well as the location
field with this property turned on.

• menubar applies to browsers that have a menu at the top of their windows (for
example, the common File and Edit menus that appear on most programs).
This setting applies only to Windows browsers—Macs have the menu at the top
of the screen, not the individual window. And it doesn’t apply to IE 7 and later,
which doesn’t normally display a menu bar.

Note: For amazing examples of JavaScript programming that use the window.open() method, check out
http://experiments.instrum3nt.com/markmahoney/ball/ and http://thewildernessdowntown.com/.

Use the window reference
Once you open a new window, you can use the reference to that window to control
it. For example, say you open a new window with the following code:

var newWin = open('products.html','theWin','width=300,height=300');

The variable newWin, in this case, holds a reference to the new window. You can
then apply any of the browser’s window methods to that variable to control the win-
dow. For example, if you want to close that window, you could use the close() method
like this:

newWin.close();

Browsers support many different methods for the window object, but here are some
of the most commonly used to control the window itself:

• close() closes the specified window. For example, the command close() closes
the current window. But you can also apply this to a window reference: newWin
.close(), for example. You can use any event to trigger this close, like a mouse
click on a button that says, “Close this window.”

Note: If you use any one of these commands by itself, it applies to the window running the script. For
example, adding the statement close(); to a script closes the window the script is in. However, if you’ve
opened a window and have a reference to that window (for example, a variable that you created when
the window was opened, like newWin), then you can close that window from the page that originally cre-
ated the window using the reference like this: newWin.close().

244 javascript & jquery: the missing manual

Creating New
Windows

• blur() forces the window to “lose focus.” That is, the window moves behind
any already opened windows. It’s a way to hide an opened window, and web
advertisers use it to create “pop under” ads—windows that open underneath
any current windows, so when the visitor closes all of his windows, there’s an
annoying ad waiting for him.

• focus() is the opposite of blur() and forces the window to come to the top of the
stack of other windows.

• moveBy() lets you move the window a set number of pixels to the right and
down. You provide two arguments to the method—the first specifies the number
of pixels to move to the right, and the second specifies how many pixels to move
the window down. For example, newWin.moveBy(200,300); moves the window
that’s referenced by the newWin variable 200 pixels to the right and 300 pixels
down on the screen.

• moveTo() moves the window to a specific spot on the monitor specified by a left
and top values. This command is the same as setting the left and top properties
(page 242) when opening a new window. For example, to move a window to the
top-left corner of the monitor, you can run this code: moveTo(0,0);.

Note: To see many of these methods in action, visit the All Is Not Lost website: http://www.allisnotlo.st/.

• resizeBy() changes the width and height of the window. It takes two arguments:
The first specifies how many pixels wider to make the window; the second
specifies how many pixels taller the window should be. For example, resize-
By(100,200); makes the current window 100 pixels taller and 200 pixels wider.
You use negative numbers to make the window smaller.

• resizeTo() changes the windows dimensions to a set width and height. For ex-
ample, resizeTo(200,400); changes the current window so it’s 200 pixels wide
and 400 pixels tall.

• scrollBy() scrolls the document inside the window by the specified number of
pixels to the right and down. For example, scrollBy(100,200); scrolls the current
document down 200 pixels and 100 pixels to the right. If the document can’t
scroll (in other words, the document fits within the window without scrollbars
or the document has been scrolled to the end), then this function has no effect.

• scrollTo() scrolls the document inside the window to a specific pixel location to
the right and from the top of the page. For example, scrollTo(100,200); scrolls
the current document down 200 pixels from its top and 100 pixels from its left
edge. If the document can’t scroll (in other words, the document fits within the
window without scrollbars or the document has been scrolled to the end), then
this function has no effect.

245chapter 8: improving navigation

Opening Pages in a
Window on the Page

Tip: The jQuery ScrollTo plug-in provides a simple way to control document scrolling using JavaScript.
Find out more about this plug-in at http://plug-ins.jquery.com/project/ScrollTo.

Events that can open a new window
In the short history of the web, pop-up windows have gotten a bad name. Unfortu-
nately, many websites have abused the open() method to force unwanted pop-up ads
on unsuspecting visitors. These days, most browsers have a pop-up blocking feature
that prevents unwanted pop-up windows, so even though you can add the JavaScript
code to make a new window open as soon as a page loads, or when the visitor closes
a window, most browsers won’t let it happen. The visitor will either see a message
letting her know that the browser prevented a new window from opening, or maybe
get no indication at all that a pop-up window was blocked.

In fact, many browsers won’t let you open a browser window using most events like
mouseover, mouseout, or keypress. The only reliable way to use JavaScript to open
windows is to trigger the action when the user clicks a link or submits a form. To
do so, you add a click event to any HTML element (it doesn’t have to be a link) and
open a new window. For example, say you want some links on a page to open in a
new window that’s 300 pixels square, has scrollbars, and is resizable, but doesn’t have
any of the other browser chrome like toolbars. You can add a class name—popup, for
example—to each of those special links, and then add this jQuery code to your page:

$('.popup').click(function() {
 var winProps='height=300,width=300,resizable=yes,scrollbars=yes';
 var newWin=open($(this).attr('href'),'aWin',winProps);
}

Opening Pages in a Window on the Page
Opening new windows can be problematic. Not only do many browsers try to block
pop-up windows, but like many designers, you may not like the fact that you can’t
really control how the browser window looks. What if you just want a clean, simple
way to display a new web page without exiting the current page? Use JavaScript, of
course! You can create a window-within-a-page effect by using JavaScript to dy-
namically add an iframe to a page and display another web page within that iframe.
The final effect looks as if the linked page is simply floating above the current page
(see Figure 8-2).

246 javascript & jquery: the missing manual

Opening Pages in a
Window on the Page

Figure 8-2:
You can quickly
create a page-within-
a-page effect using
the FancyBox jQuery
plug-in.

The <iframe> (short for inline frame) is similar to old-school HTML frames, but
you can insert an iframe anywhere in a page’s HTML. By setting the dimensions of
the iframe and specifying a src attribute (a web page address), you can load another
web page so it looks like it’s part of the current page. To make the process easy, you
can use a jQuery plug-in to handle all of the heavy lifting, so you can concentrate
on the design.

In fact, you already have used a plug-in that can do this in the last chapter—FancyBox.
In the last chapter you used FancyBox to create a gallery of images, and you can also
use its pop-up window goodness to display entire web pages from your site or any
other site on the web.

Note: You can learn more about iframes at http://www.w3schools.com/tags/tag_iframe.asp. The
<iframe> tag is not valid HTML for HTML 4.01 Strict or XHTML 1.0 Strict. However, the Greybox plug-in
uses JavaScript to add the <iframe> tag, so your actual HTML will pass validation. In addition, since HTML
5 supports the <iframe> tag, all major browsers will continue to support it into the future.

Using FancyBox to display links within a page is nearly the identical to using the
plug-in for an image gallery as described on page 222. In a nutshell, the steps are:

247chapter 8: improving navigation

Opening Pages in a
Window on the Page

1. Download the FancyBox files from http://fancybox.net.
See step 2 on page 224 for more information on which files you’ll need.

2. Attach the FancyBox CSS file to your web page.
FancyBox uses some, ahem, fancy CSS to achieve its page-within-a-page look,
and it won’t look or work correctly without it.

3. Attach the JavaScript files.
Of course FancyBox requires jQuery as well as its own external JavaScript file,
so you’ll add those to your page; for example:
<script src="js/jquery-1.6.3.min.js"></script>
<script src="fancybox/jquery.fancybox-1.3.4.js"></script>

As mentioned on page 227, you may also want to use the jQuery easing plug-in
if you want to add more interesting effects when opening and closing the web
pages on screen.

4. Add class=“iframe” to any links that you wish to open in a pop-up window
on the page.
Because FancyBox needs to open external web pages inside of <iframe> tags
(something that’s not required for a simple image gallery), you need to iden-
tify the links that require iframes. The easiest way to do this is to simply add
class=“iframe” to each link, like this:
Google

5. Add a <script> tag, the jQuery ready() function, and call FancyBox.
<script>
$(document).ready(function() {
 $('.iframe').fancybox();
}); // end ready
</script>

As you read in the last chapter, FancyBox is pretty simple to get working:
Just one line of code is needed. In this case, you can use the jQuery selector
$(‘.iframe’) since the class iframe was applied to each of the links.

6. Insert an object literal, with the width and height you want for the pop-up
window.
FancyBox accepts mean different settings. As you read on page 227, you can
control the speed at which the effect runs, the opacity of the page overlay, and
more by passing an object literal to the fancybox() function. Normally for im-
ages, the height and width of the pop-up is determined by the size of the image.
In the case of linked pages, there is no set dimension, so you need to supply
both a width and a height value. For example, say you want to make the pop-up
window 760 pixels wide and 400 pixels tall. You can add the code in bold below
to the code from step 5:
<script>
$(document).ready(function() {
 $('.iframe').fancybox({
 width : 760,
 height : 400

248 javascript & jquery: the missing manual

Opening Pages in a
Window on the Page

 }); // end fancybox
}); // end ready
</script>

You can also use percentage values so the box is a percentage of the total width
and height of the browser window—this is a good way to make sure the box
takes advantage of very large screens for some visitors, but still fits within a
smaller screen. Instead of using a number, you need to use a string value for the
width and height so that you can include the % sign, like this:
<script>
$(document).ready(function() {
 $('.iframe').fancybox({
 width : '85%',
 height : '75%'
 }); // end fancybox
}); // end ready
</script>

Tutorial:	Opening	a	Page	Within	a	Page
In this tutorial, you’ll take the FancyBox plug-in for a spin by applying it to a page
and customizing its appearance.

Note: See the note on page 29 for information on how to download the tutorial files.

1. In a text editor, open the file in-page-links.html in the chapter08 folder.
Your fingers are probably pretty tired by this point in the book, so this file
provides a link to the FancyBox style sheet, script tags to load jQuery and the
FancyBox plug-in, and a <script> tag with the $(document).ready() function.
The first step is to mark the links you wish to open in a window on the page.

2. Locate the first link—Search Google
—and add class=“iframe” so the code looks like this:
Search Google

As with the FancyBox image gallery discussed on page 224, you can add cap-
tions to the pop up window by adding a title attribute to the <a> tag.

3. Add title=“Google” to the link you edited in the last step so it looks like this:
Search Google

Now you just need to set up the other links similarly.
4. Repeat steps 2 and 3 for the next 4 links.

Use the text inside the link for the title attribute (or make up your own). Now
you can apply FancyBox to those links.

249chapter 8: improving navigation

Basic, Animated
Navigation Bar

5. Near the top of the file, click in the empty line after the $(document).ready()
function and add the code listed on lines 3–7:

1 <script>
2 $(document).ready(function() {
3 $('.iframe').fancybox({
4 width : '90%',
5 height : '90%',
6 titlePosition: 'outside',
7 }); // end fancybox
8 }); end ready()
9 </script>

Here, the width and height are set to 90% so the pop-up window will adjust to
the visitor’s browser window. The titlePosition option (page 228) positions the
title outside of the pop-up window.

6. Save the page and preview it in a web browser. Click the links.
The links open in a pop-up window. Very cool. You can use any of the other
FancyBox options discussed on page 226 to modify the appearance of the page:
changing the overlay color, adding a zoom-in and zoom-out effect when open-
ing and closing links, and altering the Close button. The file complete_in-page-
links.html includes the finished version of this tutorial.

Note: The previous edition of this book included a section on creating “bigger links”—that is, a link that
contains block level elements like divs, headings, and paragraphs. This technique let you create a large,
clickable target, complete with rollover effects. You don’t need JavaScript to do that anymore. HTML5 (and
all current browsers) let you wrap the <a> tag around any block level element including divs.

Basic, Animated Navigation Bar
As websites grow in size, it gets harder and harder to provide access to every section
of a site without overwhelming the page (and its visitors) with links. To make navi-
gating a site more manageable, many web designers use drop-down menu systems to
keep links hidden until they’re asked for (see Figure 8-3). While there are CSS-only
solutions to this problem, these aren’t always ideal. First, CSS-only pop-up menus
are temperamental: If you roll off the menu for just a split second, the menu disap-
pears. In addition, CSS doesn’t let you add any visual effects, like fading the menu
into view or animating it into position.

250 javascript & jquery: the missing manual

Basic, Animated
Navigation Bar

Figure 8-3:
Navigating a website
filled with many
pages and sections
can be confusing.
A navigation bar
with drop-down
menus is an elegant
way to simplify the
presentation of your
site’s links. It lets
you include many
navigation options
and reduce clutter on
your page.

Fortunately, with just a little JavaScript, you can create an animated menu system
that works smoothly for your visitors in all browsers. This navigation menu relies a
lot more on HTML and CSS than other JavaScript techniques you’ve learned in this
book so far. You’ll use HTML to create a nested set of links, and CSS to format those
links to look like a navigation bar and position and hide any submenus. You’ll then
add some JavaScript to animate the display of menus as the mouse moves over the
navigation bar’s buttons.

The	HTML
The HTML for your navigation menu is a straightforward bulleted list created with
the tag. Each of the top-level tags represent the main buttons on the navi-
gation bar. To create a submenu, you add a nested tag within the tag the
menu belongs to. For example, the HTML for the menu pictured in Figure 8-3 looks
like this:

<ul id="navigation" >
 Home
 About Us

 Our History
 Driving Directions
 Hours

 Our Products

 Gizmos

 Gizmo Basic
 Gizmo Standard
 Gizmo Supreme

251chapter 8: improving navigation

Basic, Animated
Navigation Bar

 Gadgets

 Gadget Basic
 Gadget Standard
 Gadget Supreme

 Gadget Supreme A
 Gadget Supreme B

 Time Machines

Note: To keep this example looking simple, the HTML uses a # symbol in place of an actual URL for
the href property on each <a> tag—, for example. In an actual navigation bar, each <a> tag
would point to a real web page, like this: .

The three main navigation buttons are Home, About Us, and Our Products. Under
About Us is a menu, represented by a nested list that includes the options Our History,
Driving Directions, and Hours. The Our Products button contains another menu
with the options Gizmo, Gadget, and Time Machines. Both Gizmo and Gadgets have
their own menus (two other nested lists); and under the Gadget Supreme option
found under the Gadget menu), there are two more options (yet another nested list).
A nested list is just another list that’s indented one more level. Visually, the HTML
above translates to a list like the following:

• Home
• About Us

• Our History
• Driving Directions
• Hours

• Our Products
• Gizmos

• Gizmo Basic
• Gizmo Standard
• Gizmo Supreme

• Gadgets
• Gadget Basic

252 javascript & jquery: the missing manual

Basic, Animated
Navigation Bar

• Gadget Standard
• Gadget Supreme

• Gadget Supreme A
• Gadget Supreme B

• Time Machines

Keep in mind that a nested list goes within the tag of its parent item. For ex-
ample, the tag containing the list items Gizmos, Gadgets, and Time Machines
is contained within the tag for the Products list item (if you need a refresher on
creating HTML lists, check out www.htmldog.com/guides/htmlbeginner/lists/).

Note: Make sure that the top-level links (Home, About Us, and Our Products in this example) always
point to a page that links to the subpages in its section (for example, the Our History, Driving Directions,
and Hours links under About Us). That way, if the browser doesn’t have JavaScript turned on, it can still
access the links in the submenus.

The	CSS
The jQuery Navigation Plugin by Daniel Thomson (www.pollenizer.com/jquery-
navigation-plugin/) does most of the work of placing the list items so you don’t need
to worry about creating the CSS necessary to create the side-by-side button or the
drop-down and flyout menus. However, you will want to customize the appearance
of the buttons; for example, add a backgound color, remove underlines for the links,
and so on. Here are a few helpful styles you can create to control different elements
of the menu. (For an example, open the complete_menu.html file in the chapter08
tutorial folder and look at the CSS in the <head> of the page.)

Note: The styles listed below assume that the main tag containing all of the menus and buttons has
an ID of navigation like this: <ul id=”navigation”>. You’re free to use another ID name if you like—
mainNav, menu, for example—just adjust the style names listed below accordingly. For example, if you
use the ID of mainNav, change the style #navigation a listed below to #mainNav a.

• #navigation ul controls the overall appearance of each menu. It’s a good idea to
set the padding and margin of this style to 0.

• #navigation li controls the styling for each button (however, as you’ll see in
this example, it’s best to put most of the styling on the <a> tag inside each
tag). However, you should at least set the padding and margin to 0 and the list-
style-type property to none in order to eliminate the bullets next to each button.
Here’s a good default style for both the ul and li tags:
#navigation ul, #navigation li {

253chapter 8: improving navigation

Basic, Animated
Navigation Bar

 margin: 0;
 padding: 0;
 list-style-type: none;
}

• #navigation a controls the appearance of each link. You can have fun with this
style: Apply background colors, fonts, font color, border lines to make your but-
tons standout. However, avoid setting margin and padding values to anything
but 0; otherwise, your buttons will overlap each other.

• #navigation a:hover controls the hover or mouseover appearance of the links.
You can change the background color so that when a visitor mouses over a but-
ton, the button is highlighted, which provides excellent visual feedback.

• #navigation .stack > a and #navigation .stack > a:hover control the appearance of
links that have menus. You may want to add a background image (like a down-
pointing arrow) to indicate that these buttons open a menu, or somehow visu-
ally distinguish these buttons from other buttons without menus.

• #navigation ul .stack > a and #navigation ul .stack > a:hover provide styling
for a sub-submenu; that is, a menu that opens off of button that is itself part
of a menu. For example, in Figure 8-4, the Gizmos and Gadgets buttons have
sub-submenus. You don’t need to style these buttons differently, but the plug-
in displays those menus somewhat differently. In Figure 8-4, you see a menu
that opens from the top-level (when mousing over Our Products, for instance)
produces a drop-down menu below the button, but the sub-submenus open off
to the right side of the button (Gizmos and Gadgets). If you want to use an arrow
graphic to indicate a menu, you may want a down-pointing arrow for the top-
level menu and a right-pointing arrow for the other menus. Look at the CSS in
the complete_menu.html file for examples.

• Clear the float after the menu. The plug-in uses the CSS float CSS property to
position the menu buttons side-by-side in the main menu. Because of this, text
or other content that follows after the menu may slide up to the right next to
the menu. In order to prevent this wrapping, you should add clear:left to a style
formatting the content immediately following the menu. An easy way to do this
is to create a class style like this:
.clearLeft { clear : left; }

And then apply that class to the tag following the of the menu. For ex-
ample, say there’s a paragraph tag following the nav menu. You could just write
this to create the opening <p> tag:
<p class="clearLeft">

The	JavaScript
The basic concept behind using JavaScript to control the display of menus is simple.
Mouse over a list item, and if it has a nested list (a pop-up menu), then show that
nested list; mouse off the list, and hide any nested lists.

254 javascript & jquery: the missing manual

Basic, Animated
Navigation Bar

There are a few subtleties that make this basic idea a bit more complicated. For
example, pop-up menus that disappear the very instant the mouse moves off of its
parent list item require precise mouse technique. It’s easy to mouse off a list item
when trying to navigate to a pop-up menu. If the menu suddenly disappears, your
visitor is forced to move the mouse back over the original list item to open the menu
again. And when there are a couple of levels of pop-up menus, it’s frustratingly easy
to miss the target and lose the menus.

To deal with this problem, most navigation menu scripts add a timer feature that
delays the disappearance of pop-up menus. This timer accommodates not-so-precise
mouse technique and makes the pop-up menus feel less fragile.

The jQuery Navigation plug-in is a very easy-to-use method of creating a basic
drop-down menu, and provides the option of either a fade in or slide in effect.

The	Tutorial
Now that you understand the basics of creating a navigation menu, here’s how to
make it happen. In this tutorial, you’ll add CSS and JavaScript to transform the basic
HTML menu list shown on page 250 into a navigation bar.

Note: See the note on page 29 for information on how to download the tutorial files.

1. In a text editor, open the file menu.html in the chapter08 folder.
This file contains the bulleted list of links that you’ll turn into a navigation bar.
To see what it looks like without any JavaScript, the first step is to attach the
plug-in file.

2. Click in the empty line after <script src=“../_js/jquery-1.6.3.min.js”></script>
and type:
<script src="../_js/nav1.1.min.js"></script>

This links the jQuery Navigation plug-in to the page. Now you’ll add the pro-
gramming—we’ve already provide a set of <script> tags with the $(document)
.ready() function in place.

3. Click in the empty line inside the $(document).ready() function and add the
following code in bold below:
$(document).ready(function() {
 $("#navigation").navPlugin({
 'itemWidth': 150,
 'itemHeight': 30
 });
});

255chapter 8: improving navigation

Basic, Animated
Navigation Bar

To activate the menu, you first use jQuery to select the tag used for the
main navigation bar—in this example, that tag has the ID navigation applied to
it, so the code $(‘#navigation’) selects that tag, and the .navPlugin() applies the
jQuery Navigation plug-in programming to the menu.
To control the plug-in, you pass an object literal as an argument. There aren’t
many options for this plug-in, but the two most important are itemWidth and
itemHeight, which control the width and height of the buttons. You can’t set dif-
ferent width and heights for each button on the menu, so make sure you provide
a width and height that will fit all the content in the button that has the most
text. You can also add effects to how the menus appear.

4. Edit the code you just added so it looks like the code below (additions are
in bold):

1 $(document).ready(function() {
2 $('#navigation').navPlugin({
3 'itemWidth': 150,
4 'itemHeight': 30,
5 'navEffect': 'slide'
6 });
7 });

Don’t forget the comma after 30 in line 4. The navEffect option controls how
the menus appear on the page. Normally they just pop into view, but you can
make a menu slide down into view with a value of ‘slide’ or fade into view with
a value of ‘fade’. You can also control the speed at which the menus appear and
disappear.

5. Edit the code so it looks like the code below (additions are in bold):

1 $(document).ready(function() {
2 $("#navigation").navPlugin({
3 'itemWidth': 150,
4 'itemHeight': 30,
5 'navEffect': 'slide',
6 'speed': 250
7 });
8 });

Don’t forget the comma after ‘slide’ in line 5. The speed option controls is set
in milliseconds, so 250 means 250 milliseconds or ¼ of a second, which is a
pretty good setting. Larger numbers will make the menu feel sluggish and
non-responsive.

6. Save the page and preview it in a browser.
You should now have a fully functional navigation bar. That was easy. Check out
the CSS in the file to see how the buttons are formatted and try different CSS
properties to customize the appearance of the menu. A completed version of the
tutorial complete_menu.html is in the chapter08 folder.

256 javascript & jquery: the missing manual

Basic, Animated
Navigation Bar

PLUg-IN ALERT

Other jQuery Plug-ins for Enhancing Page Navigation
The jQuery Navigation plug-in is simple and effective, but
there are a ton of other jQuery plug-ins for creating more
advanced navigation.

• The DD Mega Menu plug-in (http://dynamicdrive
.com/dynamicindex1/ddmegamenu.htm) lets you
create not just drop-down menus, but entire <divs>
that can drop into view. Imagine a navigation bar that
slides a big box of content into view when you mouse
over a button. In this way, you can hide content but
show it when someone mouses over a menu button.

The plug-in supports regular drop-down menus as
well.

• The jqDock plug-in (www.wizzud.com/jqDock/) lets
you simulate the Mac’s Dock: a band of images
across the screen that enlarge as you rollover them.
A fun visual effect.

If neither of these plug-ins tickle your fancy, check out the
large list of 45 jQuery navigation plug-ins and tutorials at
www.noupe.com/jquery/45-jquery-navigation-plugins-
and-tutorials.html.

http://dynamicdrive.com/dynamicindex1/ddmegamenu.htm
http://dynamicdrive.com/dynamicindex1/ddmegamenu.htm

257

chapter
9

Enhancing Web Forms

Since the earliest days of the web, forms have made it possible for websites to
collect information from their visitors. Forms can gather email addresses for a
newsletter, collect shipping information to complete an online sale, or simply

receive visitor feedback. Forms also require your site’s visitors to think: read labels,
type information, make selections, and so on. Since some sites depend entirely on
receiving form data—Amazon wouldn’t be in business long if people couldn’t use
forms to order books—web designers need to know how to make their forms as easy
to use as possible. Fortunately, JavaScript’s ability to inject interactivity into forms can
help you build forms that are easier to use and ensure more accurate visitor responses.

Understanding Forms
HTML provides a variety of tags to build a web form like the one pictured in
Figure 9-1. The most important tag is the <form> tag, which defines the beginning
(the opening <form> tag) and the end (the closing </form> tag) of the form. It also
indicates what type of method the form uses to send data (post or get), and specifies
where on the web the form data should be sent.

258 javascript & jquery: the missing manual

Understanding
Forms

Figure 9-1:
A basic form can
include many differ-
ent types of controls,
including text fields,
radio buttons,
checkboxes, menu
lists, submit buttons,
and so on. For a
complete rundown on
HTML form fields and
how to use them, visit
www.w3schools.com/
html/html_forms.asp.

You create the actual form controls—the buttons, text fields, and menus—using
either the <input>, <textarea>, or <select> tags. Most of the form elements use the
<input> tag. For example, text fields, password fields, radio buttons, checkboxes,
and submit buttons all share the <input> tag, and you specify which one with the
type attribute. For example, you create a text field by using the <input> tag and set-
ting the type attribute to text like this:

<input name="user" type="text">

Here’s the HTML that creates the form pictured in Figure 9-1; the <form> tag and
form elements are shown in bold:

<form action="process.php" method="post" name="signup" id="signup">
 <div>
 <label for="username" class="label">Name</label>
 <input name="username" type="text" id="username" size="36">
 </div>
 <div>Hobbies
 <input type="checkbox" name="hobby" id="heliskiing" value="heliisking">
 <label for="heliskiing">Heli-skiing</label>
 <input type="checkbox" name="hobby" id="pickle" value="pickle">
 <label for="pickle">Pickle eating</label>
 <input type="checkbox" name="hobby" id="walnut" value="walnut">
 <label for="walnut">Making walnut butter</label>
 </div>
 <div>
 <label for="planet" class="label">Planet of Birth</label>
 <select name="planet" id="planet">
 <option>Earth</option>

www.w3schools.com/html/html_forms.asp
www.w3schools.com/html/html_forms.asp

259chapter 9: enhancing web forms

Understanding
Forms

 <option>Mars</option>
 <option>Alpha Centauri</option>
 <option>You've never heard of it</option>
 </select>
 </div>
 <div class="labelBlock">Would you like to receive annoying e-mail from
us?</div>
 <div class="indent">
 <input type="radio" name="spam" id="yes" value="yes" checked="checked">
 <label for="yes">Yes</label>
 <input type="radio" name="spam" id="definitely" value="definitely">
 <label for="definitely">Definitely</label>
 <input type="radio" name="spam" id="choice" value="choice">
 <label for="choice">Do I have a choice?</label>
 </div>
 <div>
 <input type="submit" name="submit" id="submit" value="Submit">
 </div>
</form>

Note: The <label> tag in this sample is another tag commonly used in forms. It doesn’t create a form
control like a button, though. It lets you add a text label, visible on the page, that explains the purpose of
the form control.

Selecting	Form	Elements
As you’ve seen repeatedly in this book, working with elements on the page first
requires selecting those elements. To determine the value stored in a form field, for
example, you must select that field. Likewise, if you want to hide or show form ele-
ments, you must use JavaScript to identify those elements.

As you’ve read, jQuery can use almost any CSS selector to select page elements. The
easiest way to select a single form element is to assign an ID to it, like this:

<input name="user" type="text" id="user">

You can then use jQuery’s selection function:
var userField = $('#user');

Once you select a field, you can do something with it. For example, say you want to
determine the value in a field—to check what a visitor has typed into the field, for
instance. If the form field has an ID of user, you can use jQuery to access the field’s
value like this:

var fieldValue = $('#user').val();

Note: The jQuery val() function is discussed on page 261.

But what if you wanted to select all form elements of a particular type? For example,
you might want to add a click event to every radio button on a page.

260 javascript & jquery: the missing manual

Understanding
Forms

Since the <input> tag is used for radio buttons, text fields, password fields, check-
boxes, submit buttons, reset buttons, and hidden fields, you can’t just select the
<input> tag. Instead, you need to be able to find a particular type of input tag.

Fortunately, jQuery has taken the burden out of selecting specific types of form
fields (see Table 9-1). Using one of the jQuery form selectors, you can easily identify
and work with all fields of a particular type. For example, suppose when the visitor
submits the form, you want to check to make sure all text fields hold some value. You
need to select those text fields and then check each to see if each field holds a value.
jQuery lets you complete the first step like this:

$(':text')

Then, you simply loop through the results using the .each() function (see page 147)
to make sure there’s a value in each field. (You’ll learn a lot more about validating
form fields on page 278).

Table 9-1. jQuery includes lots of selectors to make it easy to work with specific types of form fields

Selector Example What it does
 :input $(':input') Selects all input, textarea, select, and

button elements. In other words, it
selects all form elements.

 :text $(':text') Selects all text fields.

 :password $(':password') Selects all password fields.

 :radio $(':radio') Selects all radio buttons.

 :checkbox $(':checkbox') Selects all checkboxes.

 :submit $(':submit') Selects all submit buttons.

 :image $(':image') Selects all image buttons.

 :reset $(':reset') Selects all reset buttons.

 :button $(':button') Selects all fields with type button.

 :file $(':file') Selects all file fields (used for upload-
ing a file).

 :hidden $(':hidden') Selects all hidden fields.

You can combine the form selectors with other selectors as well. For example, say
you have two forms on a page, and you want to select the text fields in just one of the
forms. Assuming that the form with the fields you’re after has an ID of signup, you
can select text fields in that form only like this:

$('#signup :text')

In addition, jQuery provides a few very useful filters that find form fields matching
a particular state:

• :checked selects all fields that are checkmarked or turned on—that is, check-
boxes and radio buttons. For example, if you want to find all checkboxes and
radio buttons that are turned on, you can use this code:

261chapter 9: enhancing web forms

Understanding
Forms

$(':checked')

Even better, you can use this filter to find which radio button within a group
has been selected. For example, say you have a group of radio buttons (“Pick a
delivery method”) with different values (UPS, USPS, and FedEx, for instance)
and you want to find the value of the radio button that your visitor has select-
ed. A group of related radio buttons all share the same HTML name attribute;
assume that you have a group of radio buttons that share the name shipping. You
can use jQuery’s attribute selector (page 133) in conjunction with the :checked
filter to find the value of the checked radio button like this:
var checkedValue = $('input[name="shipping"]:checked').val();

The selector—$(‘input[name=“shipping”]’)—selects all input elements with the
name shipping, but adding the :checked—$(‘input[name=”shipping”]:checked’)—
selects only the one that’s checked. The val() function returns the value stored
in that checkbox—USPS, for example.

• :selected selects all selected option elements within a list or menu, which lets
you find which selection a visitor makes from a menu or list (<select> tag). For
example, say you have a <select> tag with an ID of state, listing all 50 U.S. states.
To find which state the visitor has selected, you can write this:
var selectedState=$('#state:selected').val();

Notice that unlike in the example for the :checked filter, there’s a space between
the ID name and the filter (‘#state :selected’). That’s because this filter selects the
<option> tags, not the <select> tag. To put it in English, this jQuery selection
means “find all selected options that are inside the <select> tag with an ID of
state.” The space makes it work like a CSS descendent selector: First it finds the
element with the proper ID, and then searches inside that for any elements that
have been selected.

Note: You can enable multiple selections for a <select> menu. This means that the :selected filter can
potentially return more than one element.

Getting	and	Setting	the	Value	of	a	Form	Element
At times you’ll want to check the value of a form element. For example, you may want
to check a text field to make sure an email address was typed into it. Or you may
want to determine a field’s value to calculate the total cost of an order. On the other
hand, you may want to set the value of a form element. Say, for example, you have an
order form that asks for both billing and shipping information. It would helpful to
give your visitors a “Same as billing” checkbox and have the shipping information
fields automatically filled out using the information from the billing fields.

jQuery provides a simple function to accomplish both tasks. The val() function can
both set and read the value of a form field. If you call the function without passing
any arguments, it reads the field’s value; if you pass a value to the function, it sets the

262 javascript & jquery: the missing manual

Understanding
Forms

form field’s value. For example, say you have a field for collecting a user’s email
address with an ID of email. You can find the contents of that field like this:

var fieldValue = $('#email').val();

You can set the value of a field simply by passing a value to the val() function. For
example, say you have a form for ordering products and you wanted to automatically
calculate the total cost of a sale based on the quantity a visitor specifies (Figure 9-2).
You can get the quantity the visitor supplies, multiply it by the cost of the products,
and then set the value in the total field.

Figure 9-2:
jQuery makes it easy to
both retrieve the value
of a form field and set
the value of a form field.

<input name="quantity" type="text" id="quantity">

<input name="total" type="text" id="total">

var unitCost=9.95;
var amount= $('#quantity').val();
var total=amount * unitCost;
total=total.toFixed(2);
$('#total').val(total);

The code to retrieve the quantity and set the total cost for the form in Figure 9-2
looks like this:

1 var unitCost=9.95;
2 var amount=$('#quantity').val(); // get value
3 var total=amount * unitCost;
4 total=total.toFixed(2);
5 $('#total').val(total); // set value

The first line of code creates a variable that stores the cost for the product. The sec-
ond line creates another variable and retrieves the amount the visitor entered into
the field with an ID of quantity. Line 3 determines the total cost by multiplying the
order amount by the unit cost, and line 4 formats the result to include two decimal
places (see page 448 for a discussion of the toFixed() method). Finally, line 5 sets the
value in the field with ID total to the total cost. (You’ll learn how to trigger this code
using an event on the next page.)

Determining	Whether	Buttons	and	Boxes	Are	Checked
While the val() function is helpful for getting the value of any form element, for some
fields, the value is important only if the visitor has selected the field. For example,

263chapter 9: enhancing web forms

Understanding
Forms

radio buttons and checkboxes require visitors to make a choice by selecting a partic-
ular value. You saw on page 260 how you can use the :checked filter to find checked
radio buttons and checkboxes, but once you find it, you need a way to determine the
status of a particular button or box.

In HTML, the checked attribute determines whether a particular element is checked.
For example, to turn on a box when the web page is loaded, you add the checked
attribute like this for XHTML:

<input type="checkbox" name="news" id="news" checked="checked" />

And this for HTML5:
<input type="checkbox" name="news" id="news" checked>

Since checked is an HTML attribute, you can easily use jQuery to check the status of
the box like this:

if ($('#news').attr('checked')) {
 // the box is checked
} else {
 // the box is not checked
}

The code $(‘#news’).attr(‘checked’) returns the value true if the box is checked. If it’s
not, it returns the value undefined, which the JavaScript interpreter considers the
same as false. So this basic conditional statement lets you perform one set of tasks if
the box is turned on or a different set of tasks if the box is turned off. (If you need a
refresher on conditional statements, turn to page 79.)

The checked attribute applies to radio buttons as well. You can use the attr() function
in the same way to check whether the radio button’s checked attribute is set.

Form	Events
As you read in Chapter 5, events let you add interactivity to your page by respond-
ing to different visitor actions. Forms and form elements can react to many different
events, so you can tap into a wide range of events to make your forms respond intel-
ligently to your visitors’ actions.

Submit
Whenever a visitor submits a form by clicking a submit button or pressing Enter
or Return when typing into a text field, the submit event is triggered. You can tap
into this event to run a script when the form is submitted. That way, JavaScript can
validate form fields to make sure they’re correctly filled out. When the form is sub-
mitted, a JavaScript program checks the fields, and if there’s a problem, JavaScript
can stop the form submission and let the visitor know what’s wrong; if there are no
problems, then the form is submitted as usual.

To run a function when the form’s submit event is triggered, first select the form,
then use jQuery’s submit() function to add your script. For example, say you want to
make sure that the name field on the form pictured in Figure 9-1 has something in it

264 javascript & jquery: the missing manual

Understanding
Forms

when the form is submitted—in other words, a visitor can’t leave the field blank. You
can do so by adding a submit event to the form, and checking the value of the field
before the form is submitted. If the field is empty, you want to let the visitor know
and stop the submission process; otherwise, the form will be allowed to go through.

If you look at the HTML for the form on page 258, you can see that the form has an
ID of signup and the name field has an ID of username. So you can validate this form
using jQuery like this:

1 $(document).ready(function() {
2 $('#signup').submit(function() {
3 if ($('#username').val() == '') {
4 alert('Please supply a name in the Name field.');
5 return false;
6 }
7 }); // end submit()
8 }); // end ready()

Line 1 sets up the required $(document).ready() function so the code runs only after
the page’s HTML has loaded (see page 169). Line 2 attaches a function to the form’s
submit event (see page 157 if you need a reminder of how to use events). Lines 3–6
are the validation routine. Line 3 checks to see if the value of the field is an empty
string (‘’), meaning the field is empty. If the field has nothing in it, then an alert box
appears letting the visitor know what he did wrong.

Line 5 is very important: It stops the form from being submitted. If you omit this
step, then the form will be submitted anyway, without the visitor’s name. Line 6
completes the conditional statement, and line 7 is the end of the submit() function.

Note: You can also stop the form from submitting by using the event object’s preventDefault() function,
described on page 175.

The submit event only applies to forms, so you must select a form and attach the
submit event function to it. You can select the form either by using an ID name that’s
supplied in the <form> tag of the HTML, or, if there’s just a single form on the page,
you can use a simple element selector like this:

$('form').submit(function() {
 // code to run when form is submitted
});

Focus
Whenever someone either clicks into a text field on a form or tabs into a text field,
that field receives what’s called focus. Focus is an event that the browser triggers to
indicate that a visitor’s cursor is on or in a particular field; you can be sure that that’s
where your visitor’s attention is focused. You probably won’t use this event very of-
ten, but some designers use it to erase any text that’s already present in a field. For
example, say you have the following HTML inside a form:

265chapter 9: enhancing web forms

Understanding
Forms

<input name="username" type="text" id="username"↵
value="Please type your user name">

This code creates a text field on the form with the text “Please type your user name”
inside it. This technique lets you provide instructions as to how the visitor is sup-
posed to fill out the field. Then instead of forcing the visitor filling out the form to
erase all that text herself, you can erase it when she focuses on the field, like this:

1 $('#username').focus(function() {
2 var field = $(this);
3 if (field.val()==field.attr('defaultValue')) {
4 field.val('');
5 }
6 });

Line 1 selects the field (which has an ID of username) and assigns a function to the
focus event. Line 2 creates a variable, field, that stores a reference to the jQuery selec-
tion; as discussed on page 149, $(this) refers to the currently selected element within
a jQuery function—in this case, the form field.

Line 4 is what actually erases the field. It sets the value of the field to an empty
string—represented by the two single quote marks—thus removing any value from
the field. But you don’t want to erase this field every time the field gets the focus. For
example, say someone comes to the form and clicks in the form field; the first time,
that erases the “Please type your user name” text. However, if the visitor then types
his name in the field, clicks outside the field, and then clicks back into the field, you
don’t want his name to suddenly disappear. That’s where the conditional statement
in line 3 comes into play.

Text fields have an attribute called defaultValue, which represents the text inside
the field when the page first loads. Even if you erase that text, the web browser still
remembers what was in the field when the page was loaded. The conditional state-
ment checks to see if what is currently inside the field (field.val()) is the same as what
was originally inside the field (field.attr(‘defaultValue’)). If they are the same, then
the JavaScript interpreter erases the text in the field.

Here’s an example that explains the entire process. When the HTML on the previ-
ous page first loads, the text field has the value “Please type your user name.” That’s
the field’s defaultValue. So when a visitor first clicks into that field, the conditional
statement asks the question “Is what’s currently in the field the same as what was first
in the field when the page loaded?” In other words, is “Please type your user name”
equal to “Please type your user name”? The answer is yes, that field is erased.

However, say you typed helloKitty as your username, then tabbed into another field,
and then realized that you mistyped your username. When you click back into the
field to fix the mistake, the focus event is triggered again, and the function assigned
to that event runs again. This time the question is “Is ‘helloKitty’ equal to ‘Please type
your username.’” The answer is no, so the field isn’t erased and you can fix your typo.

266 javascript & jquery: the missing manual

Understanding
Forms

Blur
When you tab out of a field or click outside of the currently focused field, the brows-
er triggers a blur event. This event is commonly used with text and textarea fields to
run a validation script when someone clicks or tabs out of a field. For example, say
you have a long form with a lot of questions, many of which require particular types
of values (for example, email address, numbers, Zip codes, and so on). Say a visitor
doesn’t fill out any of those fields correctly, but hits the Submit button—and is faced
with a long list of errors pointing out how she failed to fill out the form correctly.
Rather than dumping all of those errors on her at once, you can also check fields as
she fills out the form. That way, if she makes a mistake along the way, she’ll be noti-
fied immediately and can fix the mistake right then.

Say, for instance, that you have a field for collecting the number of products the visi-
tor wants. The HTML for that might look like this:

<input name="quantity" type="text" id="quantity">

You want to make sure that the field contains numbers only (for example, 1, 2, or 9,
but not One, Two, or Nine). You can check for that after the visitor clicks out of the
field like this:

1 $('#quantity').blur(function() {
2 var fieldValue=$(this).val();
3 if (isNaN(fieldValue)) {
4 alert('Please supply a number');
5 }
6 });

Line 1 assigns a function to the blur event. Line 2 retrieves the value in the field and
stores it in a variable named fieldValue. Line 3 checks to make sure that the value is
numeric using the isNaN() method (see page 447). If it’s not a number, then line 4
runs and an alert appears.

Click
The click event is triggered when any form element is clicked. This event is particu-
larly useful for radio buttons and checkboxes, since you can add functions that alter
the form based on the buttons a visitor selects. For example, say you have an order
form that provides separate fields for both billing and shipping information. To save
visitors whose shipping and billing information are the same from having to type
their information twice, you can provide a checkbox—“Same as billing information”,
for example—that, when checked, hides the shipping information fields and makes
the form simpler and more readable. (You’ll see this example in action on page 276.)

267chapter 9: enhancing web forms

Understanding
Forms

Like other events, you can use jQuery’s click() function to assign a function to a form
field’s click event:

$(':radio').click(function() {
 //function will apply to every radio button when clicked
});

Note: The click event also applies to text fields, but it’s not the same as the focus event. Focus is trig-
gered whenever you click or tab into a text field, while the click event is only triggered when the field is
clicked into.

Change
The change event applies to form menus (like the “Planet of Birth” menu pictured
in Figure 9-1). Whenever you make a selection from the menu, the change event is
triggered. You can use this event to run a validation function: For example, many
designers commonly add an instruction as the first option in a menu, like “Please
choose a country.” To make sure a visitor doesn’t pick a country, then accidentally
change the menu back to the first option (“Please choose a country”), you can check
the menu’s selected value each time someone makes a new selection from the menu.

Or, you could program the form to change based on a menu selection. For example,
you can run a function so that whenever an option is selected from a menu, the op-
tions available from a second menu change. For example, Figure 9-3 shows a form
with two menus; selecting an option from the top menu changes the list of available
colors from the bottom menu.

To apply a change event to a menu, use jQuery’s change() function. For example, say
you have a menu listing the names of countries; the menu has an ID of country, and
each time a new selection is made, you want to make sure the new selection isn’t the
instruction text “Please choose a country.” You could do so like this:

$('#country').change(function() {
 if ($(this).val()=='Please choose a country') {
 alert('Please select a country from this menu.');
 }
}

268 javascript & jquery: the missing manual

Adding Smarts to
Your Forms

Figure 9-3:
A form menu’s change event lets you do interesting things when a
visitor selects an option from a menu. In this case, selecting an op-
tion from the top menu dynamically changes the options presented
in the second menu. Choose a product from the top menu, and the
second menu displays the colors that product is available in.

Adding Smarts to Your Forms
Web forms demand a lot from your site’s visitors: Text fields need to be filled out,
selections made, checkboxes turned on, and so on. If you want people to fill out
your forms, it’s in your interest to make the forms as simple as possible. Fortunately,
JavaScript can do a lot to make your web forms easier to use. For example, you can
hide form fields until they’re needed, disable form fields that don’t apply, and calcu-
late totals based on form selections. JavaScript gives you countless ways to improve
the usability of forms.

Focusing	the	First	Field	in	a	Form
Normally, to begin filling out a form, you have to click into the first text field and
start typing. On a page with a login form, why make your visitors go to the extra
trouble of moving their mouse into position and clicking into the login field before

269chapter 9: enhancing web forms

Adding Smarts to
Your Forms

they can type? Why not just place the cursor in the field, ready to accept their login
information immediately? With JavaScript, that’s a piece of cake.

The secret lies in focus, which isn’t just an event JavaScript can respond to but a
command that you can issue to place the cursor inside a text field. You simply select
the text field, and then run the jQuery focus() function. Let’s say, for example, that
you’d like the cursor to be inside the name field pictured in Figure 9-1 when the page
loads. If you look at the HTML for this form on page 258, you’ll see that field’s ID is
username. So the JavaScript to place the focus on—that is, place the cursor in—that
field looks like this:

$(document).ready(function() {
 $('#username').focus();
});

In this example, the text field has the ID username. However, you can also create a
generic script that always focuses the first text field of a form, without having to
assign an ID to the field:

$(document).ready(function() {
 $(':text:first').focus();
});

As you read on page 260, jQuery provides a convenient method of selecting all text
fields—$(‘:text’). In addition, by adding :first to any selector, you can select the first
instance of that element, so the jQuery selector $(‘:text:first’) selects the first text
field on the page. Adding .focus() then places the cursor in that text field, which
waits patiently for the visitor to fill out the field.

If you have more than one form on a page (for example, a “search this site” form,
and a “sign up for our newsletter” form), you need to refine the selector to identify
the form whose text field should get focus. For example, say you want the first text
field in a sign up form to have the cursor blinking in it, ready for visitor input, but
the first text field is in a search form. To focus the sign up form’s text field, just add
an ID (signup, for example) to the form, and then use this code:

$(document).ready(function() {
 $('#signup :text:first').focus();
});

Now, the selector—$(‘#signup :text:first’)—only selects the first text field inside the
sign up form.

Disabling	and	Enabling	Fields
Form fields are generally meant to be filled out—after all, what good is a text field
if you can’t type into it? However, there are times when you might not want a visitor
to be able to fill out a text field, check a checkbox, or select an option from a menu.
Say you have a field that should only be filled out if a previous box was turned on.
For example, on the 1040 form used for determining U.S. income tax, there’s a field
for collecting your spouse’s Social Security number. You’d fill out that field only if
you’re married.

270 javascript & jquery: the missing manual

Adding Smarts to
Your Forms

To “turn off ” a form field that shouldn’t be filled out, you can disable it using Java-
Script. Disabling a field means it can’t be checked (radio buttons and checkboxes),
typed into (text fields), selected (menus), or clicked (submit buttons).

To disable a form field, simply set the field’s disabled attribute to true. For example,
to disable all input fields on a form, you can use this code:

$(':input').attr('disabled', true);

You’ll usually disable a field in response to an event. Using the 1040 form example,
for instance, you can disable the field for collecting a spouse’s Social Security num-
ber when the “single” button is clicked. Assuming that the radio button for declaring
yourself as single has an ID of single, and the field for a spouse’s SSN has an ID of
spouseSSN, the JavaScript code will look like this:

$('#single').click(function() {
 $('#spouseSSN').attr('disabled', true);
});

Of course, if you disable a field, you’ll probably want a way to enable it again. To do
so, simply set the disabled attribute to false. For example, to enable all fields on a
form:

$(':input').attr('disabled', false);

Note: When disabling a form field, make sure to use the Boolean values (page 44) true or false and not
the strings ‘true’ or ‘false’. For example, this is wrong:

$(':input').attr('disabled', 'false');

And this is correct:

$(':input').attr('disabled', false);

Back to the tax form example: If the visitor selects the “married” option, then you
need to make sure that the field for collecting the spouse’s Social Security number is
active. Assuming the radio button for the married option has an ID of married, you
can add the following code:

$('#married').click(function() {
 $('#spouseSSN').attr('disabled', false);
});

You’ll run through an example of this technique in the tutorial on page 273.

271chapter 9: enhancing web forms

Adding Smarts to
Your Forms

FREQUENTLY ASKED QUESTION

Stopping Multiple Submissions
Sometimes I get the same form information submitted
more than once. How can I prevent that from happening?

Web servers aren’t always the fastest creatures…and nei-
ther is the Internet. Often, there’s a delay between the time
a visitor presses a form’s submit button, and when a new
“We got your info” page appears. Sometimes this delay can
be pretty long, and impatient web surfers hit the submit
button a second (or third, or fourth) time, thinking that the
first time they submitted the form, it simply didn’t work.

This phenomenon can lead to the same information being
submitted multiple times. In the case of an online sale, it
can also mean a credit card is charged more than once!
Fortunately, with JavaScript, there’s an easy way to disable
a submit button once the form submission process has be-
gun. Using the submit button’s disabled attribute, you can
“turn it off” so it can’t be clicked again.

Assume the form has an ID of formID, and the submit but-
ton has an ID of submit. First, add a submit() function to
the form, and then, within the function, disable the submit
button, like this:

$('#formID').submit(function() {

 $('#submit').attr('disabled',true);

});

If the page has only a single form, you don’t even need to
use IDs for the tags:

$('form').submit(function() {

 $('input[type=submit]').
attr('disabled',true);

});

In addition, you can change the message on the submit
button by changing the button’s value. For example, the
button says “Submit” at first, but when the form is submit-
ted, the button changes to say “…sending information”
You could do that like this:

$('#formID').submit(function() {

 var subButton = $(this).find(':submit');

 subButton.attr('disabled',true);

 subButton.val('...sending information');

});

Make sure to put this code inside a $(document).ready()
function, as described on page 169.

Hiding	and	Showing	Form	Options
In addition to disabling a field, there’s another way to make sure visitors don’t waste
time filling out fields unnecessarily—just hide the unneeded fields. For instance,
using the tax form example from the last section, you may want to hide the field for
a spouse’s Social Security number when the “single” option is selected and show the
field when the “married” option is turned on. You can do so like this:

$('#single').click(function() {
 $('#spouseSSN').hide();
});
$('#married').click(function() {
 $('#spouseSSN').show();
});

272 javascript & jquery: the missing manual

Tutorial: Basic Form
Enhancements

Note: jQuery’s hide() and show() functions (as well as other functions for revealing and concealing
elements) are discussed on page 187.

One usability benefit of hiding a field (as opposed to just disabling it) is that it makes
the layout of the form simpler. After all, a disabled field is still visible and can still
attract (or more accurately, distract) a person’s attention.

In many cases, you’ll want to hide or show more than just the form field: You’ll prob-
ably want to hide that field’s label and any other text associated with it. One strategy
is to wrap the code you wish to hide (field, labels, and whatever other HTML) in a
<div> tag, add an ID to that <div>, and then hide the <div>. You’ll see an example of
this technique in the following tutorial.

Tutorial: Basic Form Enhancements
In this tutorial, you’ll add three usability improvements to a basic ordering form
composed of fields for collecting billing and shipping information. First, you’ll place
the text cursor in the first field of the form when the page loads. Second, you’ll dis-
able or re-enable form fields based on selections a visitor makes. Finally, you’ll hide
an entire section of the form when it’s not needed (see Figure 9-4).

Figure 9-4:
Using JavaScript, you can increase the
usability of your web forms and add
interactive features, like hiding fields
that aren’t needed and disabling
fields that shouldn’t be filled out.

1

2

3

273chapter 9: enhancing web forms

Tutorial: Basic Form
Enhancements

Note: See the note on page 29 for information on how to download the tutorial files.

Focusing	a	Field
The first field on this tutorial’s order form page collects the name of the person plac-
ing the order (see Figure 9-4). To make using the form easier to fill out, you’ll place
the cursor in this field when the page loads.

1. In a text editor, open the file form.html in the chapter09 folder.
This file already contains a link to the jQuery file and the $(document).ready()
function (page 169). There’s a form that includes two sections—one for collect-
ing billing information and another for collecting shipping information. (Check
the page out in a web browser before continuing.)
The first step (actually, the only step for this part of the tutorial) is to focus
the field.

2. Click in the empty line after the $(document).ready() function and type
$(‘:text:first’).focus(); so the code looks like this:
$(document).ready(function() {
 $(':text:first').focus();
}); // end ready()

This selects the first text field and applies the focus() function to it to make a
browser place the insertion point in that field.
Save the file and preview it in a web browser.
When the page loads, the first field should have a blinking insertion bar—
meaning that field has focus, and you can immediately start filling it out.

Disabling	Form	Fields
That last section was just a warm-up. In this part of the tutorial, you’ll disable or en-
able two form fields in response to selections on the form. If you preview the form
in a web browser (or just look at Figure 9-4), you’ll see that at the end of the billing
information section of the form, there are three radio buttons for selecting a pay-
ment method: PayPal, Visa, and MasterCard. In addition, there are two fields below
for collecting a card number and expiration date. Those two options only apply for
credit cards, not for PayPal payments, so you’ll disable those fields when the PayPal
button is clicked.

The HTML for that section of the page looks like this (the form fields are in bold):
 1 <div>Payment Method
 2 <input type="radio" name="payment" id="paypal" value="paypal">
 3 <label for="paypal">PayPal</label>
 4 <input type="radio" name="payment" id="visa" value="visa">
 5 <label for="visa">Visa</label>
 6 <input type="radio" name="payment" id="mastercard" value="mastercard">

274 javascript & jquery: the missing manual

Tutorial: Basic Form
Enhancements

 7 <label for="mastercard">MasterCard</label>
 8 </div>
 9 <div id="creditCard" class="indent">
10 <div>
11 <label for="cardNumber" class="label">Card Number</label>
12 <input type="text" name="cardNumber" id="cardNumber">
13 </div>
14 <div>
15 <label for="expiration" class="label">Expiration Date</label>
16 <input type="text" name="expiration" id="expiration">
17 </div>
18 </div>

3. Return to your text editor and the file form.html.
You’ll add to the code you created in the previous section. First, assign a func-
tion to the click event for the PayPal radio button.

4. To the script at the top of the page, add the code in bold below:
$(document).ready(function() {
 $('#name').focus();
 $('#paypal').click(function() {

 }); // end click
}); // end ready()

The radio button for the PayPal option has an ID of paypal (see line 2 in the
HTML code above), so selecting that field is just a matter of typing $(‘#paypal’).
The rest of the code assigns an anonymous function to the click event (if this
isn’t clear, check out the discussion on assigning functions to events on page
162). In other words, not only does clicking the PayPal radio button select it
(that’s normal web browser behavior), but it also triggers the function you’re
about to create.
Next, you’ll disable the credit card number and expiration date fields, since they
don’t apply when the PayPal option is selected.

5. Inside the anonymous function you added in the previous step, add a new line
of code (line 4):
1 $(document).ready(function() {
2 $('#name').focus();
3 $('#paypal').click(function() {
4 $('#creditCard input').attr('disabled', true);
5 }); // end click
6 }); // end ready()

Although you want to disable two form fields, there’s a simple way to do that
with just one line of code. Both of the form fields are inside a <div> tag with an
ID of creditCard (see line 9 of the HTML code above). So, the jQuery selector
$(‘#creditCard input’) translates to “select all <input> tags inside of an element
with the ID creditCard.” This flexible approach makes sure you select all of the
input fields, so if you add another field, such as a CVV field, it gets selected as
well (CVVs are those three numbers on the back of your credit card that web
forms often request to enhance the security of online orders).

275chapter 9: enhancing web forms

Tutorial: Basic Form
Enhancements

To disable the fields, all you have to do is set the disabled attribute to true (see
page 269). However, this doesn’t do anything to the text labels (“Card Number”
and “Expiration Date”). Even though the fields themselves are disabled, those
text labels remain bright and bold, sending the potentially confusing signal
that the visitor can fill out the fields. To make the disabled status clearer, you’ll
change the labels to a light shade of gray. While you’re at it, you’ll also add a gray
color to the background of the fields to make them look disabled.

6. Add the bolded code below to your script:
1 $(document).ready(function() {
2 $('#name').focus();
3 $('#paypal').click(function() {
4 $('#creditCard input').attr('disabled', true) ↵
5 .css('backgroundColor','#CCC');
6 $('#creditCard label').css('color','#BBB');
7 }); // end click
8 }); // end ready()

Note: The ↵ symbol at the end of a line of code indicates that you should type the next line as part of the
previous line. Since a really long line of JavaScript code won’t fit on this book’s page, it’s broken up over
two lines. However, as described on page 49, JavaScript is rather flexible when it comes to line breaks and
spacing, so it’s actually perfectly acceptable (and sometimes easier to read) if you break a single JavaScript
statement over multiple lines like this:

$('#creditCard input').attr('disabled',true)

 .css('backgroundColor','#CCC');

Note that some programmers indent code formatted over multiple lines—in this case, indenting the .css()
function so that it lines up with the .attr() function.

First, you use the jQuery’s css() function to alter the background color of the text
fields (note that the code is part of line 4, so you should type it onto the same
line as the attr() function). Next, you use the css() function to adjust the font
color of any <label> tags inside the <div> tag (the css() function is described on
page 143).
If you preview the page in a web browser at this point, you’ll see that clicking the
PayPal button does indeed disable the credit card number and expiration date
fields and dims the label text. However, if you click either the Visa or MasterCard
buttons, the fields stay disabled! You need to re-enable the fields when either of
the other radio buttons is selected.

7. After the click() function, add a new blank line (you’re adding new code
between lines 7 and 8 in step 6) and then add the following:
$('#visa, #mastercard').click(function() {
 $('#creditCard input').attr('disabled', false) ↵
 .css('backgroundColor','');
 $('#creditCard label').css('color','');
}); // end click

276 javascript & jquery: the missing manual

Tutorial: Basic Form
Enhancements

The selector $(‘#visa, #mastercard’) selects both of the other radio buttons (see
lines 4 and 6 of the HTML on page 273). Notice that to remove the background
color and text colors added by clicking the PayPal button, you simply pass an
empty string as the color value: $(‘#creditCard label’).css(‘color’,”);. That removes
the color for that element, but leaves in place the color originally defined in the
style sheet.
You’re nearly done with this tutorial. In the final section, you’ll completely hide
a part of the page based on a form selection.

JQUERY PLUg-IN ALERT

Making It Easier to Select a Date
Whether you’re joining a social network site, reserving
seats on a plane, or searching a calendar of events, you’ll
frequently encounter forms that ask you to enter a date. In
most cases, you’ll see a basic text field into which you’re
supposed to type a date. Unfortunately, you don’t always
know what the date is going to be two Fridays from now. In
addition, an empty text field means a visitor is free to type
a date in any format he’d like: 10-20-2009, 10.20.2009,
10/20/2009, or even 20/10/2009.

The best way to make selecting a date easy and ensure
you’ll receive dates in the same format is to use a calendar
widget—a pop-up calendar that lets visitors select a date
by clicking a day on the calendar. HTML5 defines a way
to add a date picker to forms, and some web browsers
have implemented basic date pickers—unfortunately, we’re
a ways away from relying solely on HTML, and for the time
being, we’ll need to stick with JavaScript. Fortunately, you
can download a jQuery plug-in that makes adding calendar
widgets to your forms a piece of cake.

The jQuery UI Datepicker plug-in is a sophisticated date-
picking pop-up calendar that you can customize in many
ways. To use it, you need to get the plug-in from the jQuery
UI website at http://jqueryui.com/. You can use the custom
download page (http://jqueryui.com/download) to get just
the date picker, or, if you like other elements of the jQuery

UI plug-in, you can select them as well. You can also cre-
ate a custom style sheet using the jQuery UI Themeroller
(http://jqueryui.com/themeroller/).

Once you’ve downloaded those files, you attach the jQuery
UI CSS file to the page; attach the jQuery library (see page
122); and then link to the jQuery UI file (follow the instruc-
tions for linking to an external JavaScript file on page 27).
You’ll read more about jQuery UI on page 312.

After you set up all of those basic steps, you just need to
apply the datepicker() function to a text field. For example,
say you have a form and a text field with an ID of dateOf-
Birth. To make it so that when someone clicks inside that
field a pop-up calendar appears, add a <script> tag with
the basic $(document).ready() function (see page 169 for
instructions on this) and invoke the Datepicker like this:

$('#dateOfBirth').datepicker();

Of course, $(‘#dateOfBirth’) is the old jQuery way of se-
lecting the text field; the datepicker() function then han-
dles the rest. The Datepicker plug-in supports options that
include selecting a range of dates, opening the pop-up cal-
endar by clicking a calendar icon, and more. To learn more
about this useful plug-in, visit http://jqueryui.com/demos/
datepicker/.

Hiding	Form	Fields
As is common on many product order forms, this tutorial’s form includes separate
fields for collecting billing and shipping information. In many cases, this informa-
tion is exactly the same, so there’s no need to make someone fill out both sets of

http://jqueryui.com/demos/datepicker/
http://jqueryui.com/demos/datepicker/

277chapter 9: enhancing web forms

Tutorial: Basic Form
Enhancements

fields if they don’t have to. You’ll frequently see a “Same as billing” checkbox on
forms like these to indicate that the information is identical for both sets of fields.
However, wouldn’t it be even more useful (not to mention cooler) if you could com-
pletely hide the shipping fields when they aren’t needed? With JavaScript, you can.

1. Open the file form.html in a text editor.
You’ll expand on the code you’ve been writing in the last two sections of this
tutorial. First, add a function to the click event for the checkbox that has the
label “Same as billing.” The HTML for that checkbox looks like this:
<input type="checkbox" name="hideShip" id="hideShip">

2. Add the following code after the code you added in step 4 on page 274, but be-
fore the end of the script (the last line of code, which reads }); // end ready()):
$('#hideShip').click(function() {

}); // end click

Since the checkbox has the ID hideShip, the code above selects it and adds a
function to the click event. In this case, instead of hiding just a single field, you
want the entire group of fields to disappear when the box is checked. To make
that easier, the HTML that makes up the shipping information fields is wrapped
in a <div> tag with the ID of shipping: To hide the fields, you just need to hide
the <div> tag.
However, you’ll only want to hide those fields when the box is checked. If some-
one clicks the box a second time to uncheck it, the <div> tag and its form fields
should return. So the first step is to find out whether the box is checked.

3. Add the code in bold below:
$('#hideShip').click(function() {
 if ($(this).attr('checked')) {
 }
}); // end click

A simple conditional statement (page 79) makes it easy to test the state of the
checkbox and either hide or show the form fields. The $(this) refers to the object
being clicked—the checkbox in this case. The element’s checked attribute lets
you know if the box is checked or not. If it’s checked, then this attribute returns
true; otherwise, it returns false. To finish this code, you just need to add the
steps for hiding and showing the form fields.

4. Add the bolded code below (lines 16–18) to your script. The completed script
should look like this:
 1 <script>
 2 $(document).ready(function() {
 3 $('#name').focus();
 4 $('#paypal').click(function() {
 5 $('#creditCard input').attr('disabled', true) ↵
 6 .css('backgroundColor','#CCC);
 7 $('#creditCard label').css('color','#BBB);
 8 }); // end click
 9 $('#visa, #mastercard').click(function() {
10 $('#creditCard input').attr('disabled', false) ↵

278 javascript & jquery: the missing manual

Form Validation

11 .css('backgroundColor','');
12 $('#creditCard label').css('color','');
13 }); // end click
14 $('#hideShip').click(function() {
15 if ($(this).attr('checked')) {
16 $('#shipping').slideUp('fast');
17 } else {
18 $('#shipping').slideDown('fast');
19 }
20 }); // end click
21 }); // end ready()
22 </script>

The $(‘#shipping’) refers to the <div> tag with the form fields, while the slideUp()
and slideDown() functions (described on page 188) hide and show the <div> tag
by sliding the <div> up and out of view or down and into view. You can try out
some of the other jQuery effects like fadeIn() and fadeOut(), or even create your
own custom animation using the animate() function (page 192).
A finished version of this tutorial—complete_form.html—is in the chapter09
folder. If your version isn’t working, compare your code with the finished tuto-
rial and refer to the troubleshooting steps on page 34.

Form Validation
It can be frustrating to look over feedback that’s been submitted via a form on your
website, only to notice that your visitor failed to provide a name, email address, or
some other piece of critical information. That’s why, depending on the type of form
you create, you might want to make certain information mandatory.

For instance, a form used for subscribing to an email newsletter isn’t much use if the
would-be reader doesn’t type in an email address for receiving the newsletter. Like-
wise, if you need a shipping address to deliver a brochure or product, you’ll want to
be sure that the visitor includes his address on the form.

In addition, when receiving data from a web form, you want to make sure the data
you receive is in the correct format—a number, for example, for an order quantity, or
a correctly formatted URL for a web address. Making sure a visitor inputs informa-
tion correctly is known as form validation, and with JavaScript, you can identify any
errors before the visitor submits incorrect information.

Basically, form validation requires checking the form fields before the form is sub-
mitted to make sure required information is supplied and that information is
properly formatted. The form’s submit event—triggered when the visitor clicks a
submit button or presses Return when the cursor’s in a text field—is usually where
the validation occurs. If everything is fine, the form information travels, as it nor-
mally would, to the web server. However, if there’s a problem, the script stops the
submission process and displays errors on the page—usually next to the problem
form fields (Figure 9-5).

279chapter 9: enhancing web forms

Form Validation

Figure 9-5:
When you sign up
for a Yahoo account,
you’re faced with a
sea of red error mes-
sages (circled) if you
fail to fill out the form
properly.

Checking to make sure a text field has been filled out is easy. As you read on page
261, you can simply access the form’s value property (using the jQuery val() func-
tion, for example) and if the value is an empty string, then the field is empty. But it
gets trickier when you’re checking other types of fields, like checkboxes, radio but-
tons, and menus. In addition, you need to write some complicated JavaScript when
you want to check to make sure the visitor submits particular types of information,
like email addresses, Zip codes, numbers, dates, and so on. Fortunately, you don’t
need to write the code yourself; there’s a wealth of form validation scripts on the web,
and one of the best is a plug-in for the jQuery library.

280 javascript & jquery: the missing manual

Form Validation

jQuery	Validation	Plug-in
The Validation plug-in (http://bassistance.de/jquery-plugins/jquery-plugin-validation/)
is a powerful but easy-to-use jQuery plug-in created by Jörn Zaefferer. It can check
a form to make sure all required fields have been filled out, and check to make sure
that visitor input meets particular requirements. For example, a quantity field must
contain a number, and an email field must contain an email address. If a visitor
doesn’t fill out a form correctly, the plug-in will display error messages describing
the problems.

Here’s the basic process of using the Validation plug-in:

1. Download and attach the jquery.js file to the web page containing the form
you wish to validate.
Read “Getting jQuery” (on page 119) for more info on downloading the jQuery
library. The Validation plug-in uses the jQuery library, so you need to attach the
jQuery file to the page first.

2. Download and attach the Validation plug-in.
You can find the plug-in at http://bassistance.de/jquery-plugins/jquery-plugin-
validation/. The download includes lots of extra stuff, including a demo, tests,
and more. You really only need the jquery.validate.min.js file. (You’ll also find
this plug-in in the tutorial files in the _js folder, named jquery.validate.min.js—
see the tutorial on page 291). This file is just an external JavaScript file, so follow
the instructions on page 27 for linking the file to your page.

3. Add validation rules.
Validation rules are just the instructions that say “make this field required,
make sure that field gets an email address,” and so on. In other words, this step
is where you assign which fields get validated and how. There are a couple of
methods for adding validation rules: a simple way using just HTML (page 281),
and a more flexible but slightly more complicated way (page 284).

4. Add error messages.
This step is optional. The Validation plug-in comes with a predefined set of
error messages, like “This field is required,” “Please enter a valid date,” “Please
enter a valid number,” and so on. These basic messages are fine and to the point,
but you may want to customize them for your form, so that the errors provide
more definite instruction for each form field—for example, “Please type your
name,” or “Please tell us your date of birth.”
There are two methods for adding error messages—the simple way is discussed
on page 283, and the more flexible method on page 288.

Note: You can also control the style and placement of error messages as described on page 290.

http://bassistance.de/jquery-plugins/jquery-plugin-validation/
http://bassistance.de/jquery-plugins/jquery-plugin-validation/

281chapter 9: enhancing web forms

Form Validation

5. Apply the validate() function to the form.
The plug-in includes a function that makes all of the magic happen: validate().
To apply it, you first use jQuery to select the form, and then attach the function
to that selection. For example, say you have a form with an ID of signup applied
to it. The HTML might look like this:
<form action="process.php" method="post" name="signup" id="signup">

The simplest way to apply validation would be like this:
$('#signup').validate();

The validate() function can accept many different pieces of information that af-
fect how the plug-in works. For example, while you can specify validation rules
and error messages in the HTML of the form (see below), you can also specify
rules and errors when you call the validate() function. (You’ll learn about this
method on page 284.)
The entire JavaScript code for a very basic form validation (including the two
steps already described in this section) could be as simple as this:
<script src="js/jquery-1.6.3.min.js"></script>
<script src="js/jquery.validate.min.js"></script>
<script>
$(document).ready(function() {
 $('#signup').validate();
}); // end ready
</script>

Note: Remember to always wrap your script in jQuery’s document.ready() function to make sure the
script runs after the page’s HTML is loaded (see page 169).

Basic	Validation
Using the Validation plug-in can be as simple as attaching the plug-in’s JavaScript
file, adding a few class and title attributes to the form elements you want to validate,
and applying the validate() function to the form. The validate() method is the easiest
way to validate a form, and may be all you need for most forms. (However, if you
need to control where error messages are placed on a page, or apply more than one
rule to a form field, or set a minimum or maximum number of characters for a text
field, you’ll need to use the advanced method described on page 278).

To add validation, follow the basic steps outlined in the previous sections (attaching
the jQuery and Validation plug-in files, and so on), but in addition, you can embed
rules and error messages in your form fields’ HTML.

Adding validation rules
The simplest way to validate a field using the Validation plug-in is to assign one or
more of the class names listed in Table 9-2 to the form element. The plug-in is cleverly
programmed to scan the class names for each form element to determine if one of

282 javascript & jquery: the missing manual

Form Validation

the validation terms is present, and if so, to apply the particular validation rule to
that field.

For example, say you have a text field to collect a person’s name. The basic HTML
might look like this:

<input name="name" type="text">

To tell the plug-in that the field is mandatory—in other words, the form can’t be
submitted unless the visitor types something into this field—add a required class to
the tag. For example, to make this text field required, add a class attribute to the tag
like this:

<input name="name" type="text" class="required">

Adding a class in this way actually has nothing to do with CSS, even though usually
you assign a class to a tag to provide a way of formatting that tag by creating a CSS
class style. In this case, you’re using a class name to provide the plug-in the informa-
tion it needs to determine what kind of validation you’re applying to that field.

Note: JavaScript validation is a great way to provide friendly feedback to visitors who accidentally skip
a field or provide the wrong type of information, but it’s not a good way to prevent malicious input.
JavaScript validation is easy to circumvent, so if you want to make absolutely sure that you don’t receive
bad data from visitors, you’ll need to implement a server-side validation solution as well.

Requiring visitors to fill out a field is probably the most common validation task,
but often you also want to make sure the data supplied matches a particular format.
For example, if you’re asking how many widgets someone wants, you’re expecting a
number. To make a field both mandatory and contain a specific type of value, you
add both the required class plus one of the other classes listed in Table 9-2.

Table 9-2. The Validation plug-in includes methods that cover the most common validation needs

Validation rule Explanation
required The field won’t be submitted unless this field is filled out, checked, or

selected.

date Information must be in the format MM/DD/YYYY. For example, 10/30/2009
is considered valid, but 10-30-2009 is not.

url Must be a full, valid web address like http://www.chia-vet.com. Partial
URLs like www.chia-vet.com or chia-vet.com are considered invalid.

email Must be formatted like an email address: bob@chia-vet.com. This class
doesn’t actually check to make sure the email address is real, so someone
could still enter nobody@noplace.com and the field would pass validation.

number Must be a number like 32 or 102.50 or even –145.5555. However, the
input can’t include any symbols, so $45.00 and 100,000 are invalid.

digits Can only include positive integers. So 1, 20, 12333 are valid, but 10.33 and
–12 are not valid.

creditcard Must be a validly formatted credit card number.

283chapter 9: enhancing web forms

Form Validation

For example, say you have a field asking for someone’s date of birth. This informa-
tion is not only required, but should also be in a date format. The HTML for that
field could look like this:

<input name="dob" type="text" class="required date">

Notice that the class names—required and date—are separated by a space.

If you exclude the required class and just use one of the other validation types—for
example, class=“date”—then that field is optional, but if someone does type some-
thing into the field, it must be in the proper format (a date).

Tip: When you require a specific format for field information, make sure to include specific instructions
in the form so your visitors know how they should add their information. For example, if you require a
field to be a date, add a message near the field that says something like “Please enter a date in the format
01/25/2009.”

Adding error messages
The Validation plug-in supplies generic error messages to match the validation prob-
lems it checks for. For example, if a required field is left blank, the plug-in displays
the message “This field is required.” If the field requires a date, then the message
“Please enter a valid date” appears. You can, however, override these basic messages
and supply your own.

The easiest way is to add a title attribute to the form field and supply the error mes-
sage as the title’s value. For example, say you’re using the required class to make a
field mandatory, like this:

<input name="name" type="text" class="required">

To supply your own message, just add a title attribute:
<input name="name" type="text" class="required" ↵
title="Please give us your name.">

Normally, web designers use the title attribute to increase a form field’s accessibility
by providing specific instructions that appear when someone mouses over the field,
or for screen-reading software to read aloud. But with the Validation plug-in, you
use the title attribute to supply the error message you wish to appear. The plug-in
scans all validated fields and sees if there’s a title attribute. If there is, then the plug-
in uses the attribute’s value as the error-message text.

If you use more than one validation method, you should supply a title that makes
sense for either situation. For example, if you have a field that’s required and that
also must be a date, a message like “This field is required” doesn’t make much sense
if the visitor enters a date in the wrong format. Here’s an example of an error mes-
sage that makes sense whether the visitor leaves the field blank or enters the date the
wrong way:

<input name="dob" type="text" class="required date" ↵
title="Please enter a date in the format 01/28/2009.">

284 javascript & jquery: the missing manual

Form Validation

Adding validation rules and error messages by adding class names and titles to fields
is easy, and it works great. But sometimes you may have more complicated valida-
tion needs; the Validation plug-in offers a second, more advanced method of adding
validation to a form. For example, you may want to have different error messages
based on the type of error—like one message when a field is left blank and another
when the visitor enters the wrong type of information. You can’t do that using the
basic validation method described in this section. Fortunately, the Validation plug-
in offers a second, more advanced method that lets you implement a wider range of
validation rules.

For example, you must use the advanced method if you want to make sure a mini-
mum number of characters is entered into a field. When setting a password, for
instance, you might want to make sure the password is at least six characters long.

Advanced	Validation
The Validation plug-in provides another way of adding validation to a form that
doesn’t require changing the fields’ HTML. In addition, the plug-in supports a wide
variety of additional options for controlling how the plug-in works. You set these
options by passing an object literal (page 145) to the validate() function, containing
separate objects for each option. For example, to specify a validation rule, you pass
one object containing the code for the rule. First, you include an opening brace di-
rectly after the first parentheses for the validation function and a closing brace directly
before the closing parentheses:

$('idOfForm').validate({
 // options go in here
}); // end validate();

These braces represent an object literal, which will contain the option settings. Using
the Validation plug-in in this way gets a little confusing, and the best way to under-
stand how the plug-in’s author intended it to work is to look at a simple example, like
the one in Figure 9-6.

Figure 9-6:
Even with a simple form like this one, you can use the Validation plug-in’s
advanced options for greater control.

285chapter 9: enhancing web forms

Form Validation

Tip: You can combine the basic validation method described on page 281 and the advanced method
described here on the same form. For fields that have just one validation rule and error message, you can
use the simple method since it’s fast, and just use the advanced method for more complicated validation.
The tutorial on page 291, for instance, uses both methods for validating a single form.

The HTML for the form in Figure 9-6 is as follows:
<form action="process.php" method="post" id="signup">
 <div>
 <label for="name">Name</label>
 <input name="name" type="text">
 </div>

 <div>
 <label for="email">E-mail Address</label>
 <input name="email" type="text">
 </div>
 <div>
 <input type="submit" name="submit" value="Submit">
 </div>
</form>

This form contains two text fields, shown in bold: one for a person’s name and one
for an email address. This section walks through the process of validating both of
these fields using advanced rules to make sure the name field is filled and the email
field is both filled in and correctly formatted.

Note: You can find a complete list of options for the Validation plug-in at http://docs.jquery.com/Plugins/
Validation/validate#toptions.

Advanced rules
The advanced way to specify validation rules involves passing an object (see page
145) containing the names of the form fields and the validation rule or rules you
want to apply to the field. The basic structure of that object looks like this:

rules: {
 fieldname : 'validationType'
}

The object is named rules, and inside it you specify the fields and validation types
you want to apply to the field. The entire object is then passed to the validate() func-
tion. For example, in the form pictured in Figure 9-6, to make the name field manda-
tory, you apply the validate() function to the form as described on the previous page,
and then pass the rules object to the function like this:

http://docs.jquery.com/Plugins/Validation/validate#toptions
http://docs.jquery.com/Plugins/Validation/validate#toptions

286 javascript & jquery: the missing manual

Form Validation

$('#signup').validate({
 rules: {
 name: 'required'
 }
}); // end validate()

In this case, the field is named name, and the rule specifies that the field is required.
To apply more than one validation rule to a form field, you must create another ob-
ject for that field. For example, to expand the validation rules for the form in Figure
9-6, you can add a rule that would not only make the email field required, but also
specify that the email address must be validly formatted:

1 $('#signup').validate({
2 rules: {
3 name: 'required',
4 email: {
5 required:true,
6 email:true
7 }
8 }
9 }); // end validate()

Note: According to the rules of JavaScript object literals, you must end each name/value pair except the
last one with a comma. For example, in line 3 above, name: ‘required’ must have a comma after it, because
another rule (for the email field) follows it. Turn to page 145 for a refresher on how object literals work.

Lines 4–7, shown in bold, specify the rules for the email field. The field’s name is
email, as specified in the HTML (see the HTML code on page 285); required:true
make the field required; and email:true makes sure the field contains an email address.

You can use any of the validation types listed in Table 9-2. For example, say you add
a field named birthday to the form used in this example. To ensure that a date is
entered into the field, you can expand the list of rules like this:

$('#signup').validate({
 rules: {
 name: 'required',
 email: {
 required:true,
 email:true
 },
 birthday: 'date'
 }
}); // end validate()

If you also want the birthday field to be required, adjust the code as follows:

287chapter 9: enhancing web forms

Form Validation

$('#signup').validate({
 rules: {
 name: 'required',
 email: {
 required:true,
 email:true
 },
 birthday: {
 date:true,
 required:true
 }
 }
}); // end validate()

As mentioned earlier, one of the most powerful and useful things you can do with
advanced validation rules is require visitors’ entries to be a certain minimum or
maximum length. For example, on a complaint report form, you may want to limit
comments to, say, 200 characters in length, so your customers will get to the point
instead of writing War and Peace. There are also rules to make sure that numbers
entered are within a certain range; for example, unless you’re accepting information
from mummies or vampires, you won’t accept birth years earlier than 1900.

• minlength. The field must contain at least the specified number of characters.
For example, the rule to make sure that at least six characters are entered into
a field is this:
minlength:6

• maxlength. The field must contain no more than the specified number of char-
acters. For example, the rule to ensure that no more than 100 characters are
entered into the field looks like this:
maxlength:100

• rangelength. A combination of both minlength and maxlength. Specifies both
the minimum and maximum number of characters allowed in a field. For ex-
ample, the rule to make sure a field contains at least six characters but no more
than 100 is as follows:
rangelength:[6,100]

• min. Requires that the field contain a number that’s equal to or greater than the
specified number. For example, the following rule requires that the field both
contains a number and that the number is greater than or equal to 10.
min:10

In this example, if the visitor enters 8, the field won’t validate because 8 is less
than 10. Likewise, if your visitor types a word—eight, for example—the field
won’t validate and she’ll get an error message.

• max. Like min, but specifies the largest number the field can contain. To make
sure a field contains a number less than 1,000, for example, use the following:
max:1000

288 javascript & jquery: the missing manual

Form Validation

• range. Combines min and max to specify both the smallest and largest numbers
that the field must contain. For example, to make sure a field contains at least 10
but no more than 1,000, use this:
range:[10,1000]

• equalTo. Requires that a field’s contents match another field. For example, on a
sign-up form, it’s common to ask a visitor to enter a password and then verify
that password by typing it a second time. This way, the visitor can make sure he
didn’t mistype the password the first time. To use this method, you must specify
a string containing a valid jQuery selector. For example, say the first password
field has an ID of password applied to it. If you want to make sure the “verify
password” field matches the first password field, you use this code:
equalTo: '#password'

You can use these advanced validation rules in combination. Just take it one field at
a time. Here’s an example of how they work together: Assume you have a form that
includes two fields, one for creating a password, and another for confirming that
password. The HTML for those two fields might look like this:

<input name="password" type="password" id="password">
<input name="confirm_password" type="password" id="confirm_password">

Both fields are required, and the password must be at least 8 characters but no more
than 16. And finally, you want to make sure the “confirm password” field matches
the other password field. Assuming the form has an ID of signup, you can validate
those two fields with the following code:

$('#signup').validate({
 rules: {
 password: {
 required:true,
 rangelength:[8,16]
 },
 confirm_password: {
 equalTo:'#password'
 }
 }
}); // end validate()

Advanced error messages
As you read on page 283, you can easily add an error message for a field by adding
a title with the error message text. However, this approach doesn’t let you create
separate error messages for each type of validation error. For example, say a field is
required and must have a number in it. You might want two different messages for
each error: “This field is required”, and “Please enter a number.” You can’t do that
using the title attribute. Instead, you must pass a JavaScript object to the validate()
function containing the different error messages you wish to display.

289chapter 9: enhancing web forms

Form Validation

POWER USERS’ CLINIC

Validating with the Server
While JavaScript validation is great for quickly checking
user input, sometimes you need to check in with the server
to see if a field is valid. For example, say you have a sign-up
form that lets visitors create their own username for use
on the forums of your site. No two people can share the
same username, so it would be helpful if you could inform
the person filling out the form if the username he wants
is already taken before submitting the form. In this case,
you have to consult with the server to find out whether the
username is available.

The Validation plug-in provides an advanced validation
method, named remote, that lets you check in with the
server. This method lets you pass both the field name and
the value the visitor has typed into that field to a server-
side page (like a PHP, JSP, ASP, or Cold Fusion page). The
server-side page can then take that information and do
something with it, such as check to see if a username is
available, and then respond to the form with either a value
of true (passed validation) or false (failed validation).

Assume you have a field named “username” that’s both
required and must not be a name currently in use on your

site. To create a rule for the field (using the advanced rules
method described on the previous page), you can add the
following to the rules object:

username : {

 required: true,

 remote: 'check_username.php'

}

The remote method takes a string containing the path
from the current page to a page on the web server. In this
example, the page is named check_username.php. When
the validation plug-in tries to validate this field, it sends
the field’s name (username) and the visitor’s input to the
check_username.php, which then determines if the user-
name is available. If the name is available, the PHP page re-
turns the word ‘true’; if the username is already taken, the
page returns the word ‘false’, and the field won’t validate.

All of this magic takes place via the power of Ajax, which
you’ll learn about in Part 4. To see a working example of
this validation method, visit http://jquery.bassistance.de/
validate/demo/captcha/.

The process is similar to creating advanced rules, as described in the previous sec-
tion. The basic structure of the messages object is as follows:

messages: {
 fieldname: {
 methodType: 'Error message'
 }
}

In the above example, replace fieldname with the field you’re validating, and meth-
odType with one of the assigned validation methods. For example, to combine the
validation methods for the password fields and messages for each of those errors,
add the following code shown in bold:

http://jquery.bassistance.de/validate/demo/captcha/
http://jquery.bassistance.de/validate/demo/captcha/

290 javascript & jquery: the missing manual

Form Validation

$('#signup').validate({
 rules: {
 password: {
 required:true,
 rangelength:[8,16]
 },
 confirm_password: {
 equalTo:'#password'
 }
 }, // end of rules
 messages: {
 password: {
 required: "Please type the password you'd like to use.",
 rangelength: "Your password must be between 8 and 16 characters long."
 },
 confirm_password: {
 equalTo: "The two passwords don't match."
 }
 } // end of messages
}); // end validate()

Tip: As you can see, using the advanced method can require a lot of object literals, and the number of {
and } characters required can often make the code confusing to understand. A good approach when using
the Validation plug-in’s advanced method is to go slow and test often. Instead of trying all your rules and
messages in one furious typing session, add one rule, then test the page. If the validation doesn’t work,
you’ve probably made a typo somewhere, so fix it before continuing on and adding a second rule. Once
the rules are finished and they work, add the object literal for any error messages. Again, go slow, add the
messages one at a time, and test often.

Styling	Error	Messages
When the Validation plug-in checks a form and finds an invalid form field, it does
two things: First, it adds a class to the form field; then it adds a <label> tag contain-
ing an error message. For example, say your page has the following HTML for an
email field:

<input name="email" type="text" class="required">

If you add the Validation plug-in to the page with this form and your visitor tries
to submit the form without filling out the email field, the plug-in would stop the
submission process and change the field’s HTML, adding an additional tag. The new
HTML would look like this:

<input name="email" type="text" class="required error">
<label for="email" generated="true" class="error">
This field is required.</label>

In other words, the plug-in adds the class name error to the form field. It also inserts
a <label> tag with a class named error containing the error-message text.

To change the appearance of the error messages, you simply need to add a style to
your style sheet defining the look for that error. For example, to make the error text
bold and red, you can add this style to your style sheet:

291chapter 9: enhancing web forms

Validation Tutorial

label.error {
 color: #F00;
 font-weight: bold;
}

Since the Validation plug-in also adds an error class to the invalid form field, you can
create CSS styles to format those as well. For example, to place a red border around
invalid fields, you can create a style like this:

input.error, select.error, textarea.error {
 border: 1px red solid;
}

Validation Tutorial
In this tutorial, you’ll take a form and add both basic and advanced validation op-
tions to it (see Figure 9-7).

Figure 9-7:
Don’t let visitors submit your
forms incorrectly! With a little help
from the jQuery Validation plug-
in, you can make sure that you get
the information you’re after.

292 javascript & jquery: the missing manual

Validation Tutorial

Note: See the note on page 29 for information on how to download the tutorial files.

Basic	Validation
In this tutorial, you’ll get started with the Validation plug-in by applying the basic
validation methods described on page 281. Then you’ll learn more complex valida-
tion procedures using the advanced method discussed on page 284. As you’ll see, it’s
perfectly OK to mix and match the two approaches on the same form.

1. In a text editor, open the file validation.html in the chapter09 folder.
This file contains a form with a variety of form fields, including text fields,
checkboxes, radio buttons, and menus. You’ll add validation to this form, but
first you need to attach the validation plug-in to the page.

2. On the blank line immediately after the <script> tag that attaches the jQuery
file to this page, type:
<script src="../_js/jquery.validate.min.js"></script>

The validation plug-in is contained in the _js folder in the main tutorials folder—
along with the jQuery file.
This page already has another <script> tag, complete with the jQuery ready()
function. You just need to add the validate() function to this page’s form.

3. In the blank line directly below $(document).ready(function(), type:
$('#signup').validate();

The form has an ID of signup:
<form action="process.php" method="post" name="signup" id="signup">

So $(‘#signup’) uses jQuery to select that form, and validate() applies the valida-
tion plug-in to the form. However, the form won’t get validated until you specify
some validation rules. So first, you’ll make the name field required and supply
a custom error message.

4. Locate the HTML for the name field—<input name=“name” type=“text”
id=“name”>—and add class and title attributes, so the tag looks like this
(changes are in bold):
<input name="name" type="text" id="name"
class="required" title="Please type your name.">

The class=“required” part of the code lets the Validation plug-in know that this
field is mandatory, while the title attribute specifies the error message that the
visitor will see if she doesn’t fill out this field.

5. Save the page, open it in a web browser, and click Submit.
Since the name field isn’t filled out, an error message appears to the right of the
field (circled in Figure 9-8).

293chapter 9: enhancing web forms

Validation Tutorial

Congratulations—you’ve just added validation to your form using the basic
method discussed on page 281. Next, you’ll add another validation rule for the
“date of birth” field.

Note: If you don’t see an error message and instead get a page with the headline “Form Processed,” the
validation didn’t work and the form was submitted anyway. Go over steps 1–4 again to make sure you
didn’t make any typos.

Figure 9-8:
Don’t worry about
the appearance of the
error message just
yet. You’ll learn how
to format errors on
page 299.

6. Locate the HTML for the date of birth field—<input name=“dob” type=“text”
id=“dob”>—and add class and title attributes so the tag looks like this (changes
are in bold):
<input name="dob" type="text" id="dob" class="date" ↵
title="Please type your date of birth using this format: 01/19/2000">

Because you didn’t add the required class, filling out this field is optional. How-
ever, if the visitor does type anything into the field, the class=“date” tells the
plug-in that the input must be formatted like a date. You use the title attribute
again to hold the error message if this field isn’t valid. Save the page and try it
out in a web browser—type something like kjsdf in the date of birth field and
try to submit the form.

Note: If you did want to require that the visitor fill out the date of birth field and that enter a valid date,
just add required to the class attribute. Just make sure date and required are separated by a space:

class="date required"

You can use the same technique for validating a menu (<select> tag).

294 javascript & jquery: the missing manual

Validation Tutorial

7. Locate the HTML for the opening select tag—<select name=“planet”
id=“planet”>—and add class and title attributes so that the tag looks like this
(changes are in bold):
<select name="planet" id="planet" class="required" ↵
title="Please choose a planet.">

You can validate menus just like text fields by adding a validation class and
title attribute.
Now it’s time to try the advanced validation method.

Advanced	Validation
As mentioned on page 284, there are some things you can’t do with the basic valida-
tion methods, like assign different error messages for different validation problems,
or require a specific number of characters for input. In these cases, you need to use
the Validation plug-in’s advanced approach for creating validation rules and error
messages.

To start, you’ll add two validation rules and two different error messages for the
form’s email field.

1. In the JavaScript code near the top of the file, locate the line $(‘#signup’)
.validate(); and edit it to look like this:
$('#signup').validate({

}); // end validate()

In other words, add opening and closing braces between the parentheses in
validate(), add an empty line between the braces, and add a JavaScript comment
at the end. The comment is a note to identify the end of the validate() function.
You’ll soon be filling the script with braces and parentheses, so it can get tricky
to remember which brace goes with what. This comment can help keep you
from getting confused, but like all comments in code, it’s optional.
Next, you’ll create the basic skeleton for adding validation rules.

2. In the empty line (between the braces) you added in the last step, type:
rules: {

} //end rules

To make the code easier to read, you might also want to put two spaces before
the rules and }. Indenting those lines makes it more visually obvious that these
lines of code are part of the validate() function.
This code creates an empty object, which you’ll fill with specific field names and
validation methods. In addition, a JavaScript comment identifies the end of the
rules object. Next, you’ll add rules for the email field.

3. Edit the validate() function so that it looks like this (changes are in bold):
$('#signup').validate({
 rules: {
 email: {

295chapter 9: enhancing web forms

Validation Tutorial

 required: true,
 email: true
 }
 } // end rules
}); // end validate()

Here, you’ve added another object literal. The first part, email, is the name of the
field you wish to validate and matches the field’s name in the HTML. Next, two
validation methods are specified—the field is required (meaning visitors must
fill it in if they want to submit the form), and the input must match the form of
an email address. “Test early and often” is a good motto for any programmer.
Before moving on, you’ll test to make sure the script is working.

4. Save the file; preview it in a web browser and try to submit the form.
You’ll see the plug-in’s default error message for missing information: “This
field is required.” Click in that field and type a couple letters. The error message
changes to “Please enter a valid email address” (that’s the standard message the
plug-in prints when a visitor types something other than an email address into
an email field). If you don’t see any error messages, then go over your code and
compare it to step 3 above.
Now you’ll add custom error messages for this field.

5. Return to your text editor. Type a comma after the closing brace for the rules
object (but before the // end rules comment), and then type:
messages: {

} // end messages

This code represents yet another object literal, named messages. This object will
contain any error messages you wish to add to your form fields. Again, the com-
ment at the end—// end messages—is optional. Now you’ll add the actual error
messages for the email field.

6. Edit the validate() function so it looks like this (the additions are in bold):
 1 $('#signup').validate({
 2 rules: {
 3 email: {
 4 required: true,
 5 email: true
 6 }
 7 }, //end rules
 8 messages: {
 9 email: {
10 required: "Please supply your e-mail address.",
11 email: "This is not a valid e-mail address."
12 }
13 } // end messages
14 }); // end validate(),

Save the page and preview it in a web browser again. Try to submit the form
without filling out the email address field. You should now see your custom
error message: “Please supply your email address.” Now, type something like

296 javascript & jquery: the missing manual

Validation Tutorial

“hello” into the email field. This time you should get the “This is not a valid
email address” error.
If you don’t get any error messages and, instead, end up on the “Form Pro-
cessed!” page, there’s a JavaScript error somewhere in your code. The most likely
culprit is a missing comma after the rules object (see line 7), or in the email
message object (see line 10).
Now it’s time to add validation rules for the two password fields.

7. Edit the rules object so that it looks like this (changes are in bold):
 1 rules: {
 2 email: {
 3 required: true,
 4 email: true
 5 },
 6 password: {
 7 required: true,
 8 rangelength:[8,16]
 9 },
10 confirm_password: {
11 equalTo:'#password'
12 }
13 }, //end rules

Don’t miss the comma on line 5—it’s necessary to separate the email rules from
the password rules.
The first set of rules applies to the first password field. It makes the field manda-
tory and requires the password to be at least 8 but not more than 16 characters
long. The second rule applies to the email confirmation field and requires that
its contents match the value in the first password field (details on how these
rules work can be found on page 287).

Tip: It’s a good idea to save the file and test it after each step in this tutorial. That way, if the validation
stops working, you know which step you made the error in.

These rules also need accompanying error messages.
8. Edit the messages object so it looks like this (changes in bold):

 1 messages: {
 2 email: {
 3 required: "Please supply an e-mail address.",
 4 email: "This is not a valid email address."
 5 },
 6 password: {
 7 required: 'Please type a password',
 8 rangelength: 'Password must be between 8 and 16 characters long.'
 9 },
10 confirm_password: {
11 equalTo: 'The two passwords do not match.'
12 }
13 } // end messages

297chapter 9: enhancing web forms

Validation Tutorial

Don’t forget the comma on line 5.
At this point, you should be feeling comfortable adding rules and error messages.
Next you’ll add validation for the checkboxes and radio buttons.

Validating	Checkboxes	and	Radio	Buttons
Checkboxes and radio buttons usually come in groups, and typically, adding valida-
tion to several checkboxes or radio buttons in a single group is a tricky process of
finding all boxes or buttons in a group. Fortunately, the Validation plug-in takes care
of the hard parts, and makes it easy for you to quickly validate this form fields.

1. Locate the HTML for the first checkbox—<input name=“hobby” type=
“checkbox” id=“heliskiing” value=“heliskiing”>—and add class and title attri-
butes so that the tag looks like this (changes are in bold):
<input name="hobby" type="checkbox" id="heliskiing"
value="heliskiing" class="required"
title="Please check at least 1 hobby.">

Here, you’re using the basic validation technique described on page 281. You
could also use the advanced technique and include the rules and error messages
as part of the validate() function, but if you only require one validation rule and
error message, the basic technique is more straightforward and less error-prone.
In this case, all three checkboxes share the same name, so the Validation plug-in
treats them as a group. In other words, this validation rule applies to all three
boxes, even though you’ve only added the class and title attributes to one box.
In essence, you’ve required that visitors checkmark at least one box before they
can submit the form.
You’ll do the same thing for the radio buttons at the bottom of the form.

2. Locate the HTML for the first radio button—<input type=“radio” name=
“spam” id=“yes” value=“yes”>—and add class and title attributes so the tag
looks like this (changes are in bold):
<input type="radio" name="spam" id="yes" value="yes"
class="required" title="Please select an option">

A related group of radio buttons always shares the same name (spam, in this
case), so even though you’ve added a rule and error message to just one button,
it will apply to all three. Because the field is required, visitors must select one of
the three radio buttons to submit the form.

3. Save the file, preview it in a web browser, and click Submit.
You may notice something looks a bit odd: When the error messages for the
checkbox and radio buttons appear, they come directly after the first checkbox
and radio button (circled in Figure 9-9). Even worse, the messages appear be-
tween the form field and its label (for example, between the checkbox and the
label “Heli-skiing”).

298 javascript & jquery: the missing manual

Validation Tutorial

Figure 9-9:
The Validation plug-in
places error messages
after the invalid form
field. In the case of
checkboxes and radio
buttons, that looks
awful. In order to
place the error mes-
sage elsewhere, you
need to provide some
instruction to the
plug-in’s validate()
function.

The Validation plug-in places the error message directly after the form field that
you apply the validation rule to. Normally, that’s OK: When the message ap-
pears directly after a text field or menu, it looks fine (as in the earlier examples
in this tutorial). But in this case, the message should go somewhere else, prefer-
ably after all of the checkboxes or radio buttons.
Fortunately, the Validation plug-in has a way to control the placement of error
messages. You can create your own rules for error-message placement by pass-
ing another object literal to the validate() function.

4. Locate the validation script you added earlier, and type a comma after the
closing brace for the messages object (but before the // end messages com-
ment). Insert a blank line after the messages object, and then type:
errorPlacement: function(error, element) {
 if (element.is(":radio") || element.is(":checkbox")) {
 error.appendTo(element.parent());
 } else {
 error.insertAfter(element);
 }
} // end errorPlacement

The Validation plug-in is programmed to accept an optional errorPlacement
object, which is just an anonymous function (page 148) that determines where
an error message is placed. Every error is sent through this function, so if you
only want to change the placement of some error messages, you’ll need to use
a conditional statement to identify the form elements whose errors you wish

299chapter 9: enhancing web forms

Validation Tutorial

to place. The function receives both the error message and the form element
the error applies to, so you can use a conditional statement (page 79) to check
whether the form field is either a radio button of a checkbox. If it is, the error
message is added to the end of the element containing the button or checkbox.
In this page’s HTML, a <div> tag wraps around the group of checkboxes, and
another <div> tag wraps the radio buttons. So the error message is placed just
before the closing </div> tag using jQuery’s appendTo() function (see page 139).

You’re done with all of the JavaScript programming for this form. Here’s the com-
plete script, including the $(document).ready() function:

 1 $(document).ready(function() {
 2 $('#signup').validate({
 3 rules: {
 4 email: {
 5 required: true,
 6 email: true
 7 },
 8 password: {
 9 required: true,
10 rangelength:[8,16]
11 },
12 confirm_password: {equalTo:'#password'},
13 spam: "required"
14 }, //end rules
15 messages: {
16 email: {
17 required: "Please supply an e-mail address.",
18 email: "This is not a valid email address."
19 },
20 password: {
21 required: 'Please type a password',
22 rangelength: 'Password must be between 8 and 16 characters long.'
23 },
24 confirm_password: {
25 equalTo: 'The two passwords do not match.'
26 }
27 }, // end messages
28 errorPlacement: function(error, element) {
29 if (element.is(":radio") || element.is(":checkbox")) {
30 error.appendTo(element.parent());
31 } else {
32 error.insertAfter(element);
33 }
34 } // end errorPlacement
35 }); // end validate
36 }); // end ready()

Formatting	the	Error	Messages
Now the page has working form validation, but the error messages don’t look very
good. Not only are they spread around the page, but they don’t stand out the way
they should. They’d look a lot better if they were bold, red, and appeared underneath

300 javascript & jquery: the missing manual

Validation Tutorial

the form field they apply to. You can make all of those formatting changes with a
little simple CSS.

1. Near the top of the validation.html file, click on the blank line between the
opening <style> and closing </style> tags.
This page has an empty style sheet into which you’ll add the styles. In a real-
world situation, you’d probably use an external style sheet—either the main
style sheet used by the other pages of the site, or a specific style sheet intended
just for forms (forms.css, for example). But to keep things simpler for this tuto-
rial, you’ll just add the new styles to this page.

2. Add the following CSS rule inside the <style> tags:
#signup label.error {
 font-size: 0.8em;
 color: #F00;
 font-weight: bold;
 display: block;
 margin-left: 215px;
}

The CSS selector #signup label.error targets any <label> tag with a class of error
that appears inside another element with the ID signup. In this case, the <form>
tag has an ID signup, and the Validation plug-in puts error messages inside a
<label> tag and adds the class error (see page 290). In other words, this CSS rule
only applies to the error message inside this form.
The CSS properties themselves are pretty basic: First, the font size is reduced
to .8 em; next, the color is changed to red, and the text is bolded. The display:
block instruction informs the browser to treat the <label> tag as a block-level
element. That is, instead of putting the error message next to the form field, the
browser treats the error like a paragraph of its own, with line breaks above and
below. Finally, to make the error message line up with the form fields (which
are indented 215 pixels from the left edge of the main content area), you need
to add a left margin.
To make it even clearer which fields have validation problems, you can add CSS
rules to change the look of invalid form fields.

3. Add one final rule to the form.css file:
#signup input.error, #signup select.error {
 background: #FFA9B8;
 border: 1px solid red;
}

This rule highlights an invalid form field by adding a red border around its
edges and a background color to the field.

That’s all there is to it. Save the CSS file and preview the validation.html page in a
web browser to see how the CSS affects the error messages (you may need to hit the
browser’s reload button to see the changes you made to the CSS file).

The final form should look like Figure 9-7. You can find a completed version of the
tutorial (complete_validation.html) in the chapter09 folder.

301

chapter
10

Expanding Your Interface

A web page can feel like a long one-page brochure. Visitors are overwhelmed
if there seem to be acres of text and pictures to scroll through, and they are
unable to quickly get the information they need. It’s up to you to provide

your visitors tools to find what they’re after. Using JavaScript and jQuery, you can
streamline your web page and make it simpler for visitors to deal with—hiding
content until it’s required and providing easier access to information.

In this chapter, you’ll learn common techniques to make your pages easier to read
and use. Tabs fit lots of information in a small space and let visitors click a tab to
access content in smaller chunks. Tooltips—pop-up windows with additional infor-
mation about moused-over links, form fields, and other HTML elements—provide
supplemental information. An increasingly popular tactic for controlling page content
is a slider—sort of a window on the page where content slides in and out of view.
Sliders let you showcase content and are commonly used on home pages.

You’ll also learn a few useful techniques for building your own interface widgets:
how to determine the dimensions of the browser window, a page element, and the
position of elements on a page.

Organizing Information in Tabbed Panels
Putting too much information on a page can overwhelm your visitors and make a
web page look crowded. JavaScript gives you many ways to present a lot of informa-
tion in a small space. One technique is the tabbed panel effect. A tabbed panel consists
of tabs along the top, and panels that are visible one at a time. When your visitor
clicks a tab, the currently visible panel disappears and the hidden panel appears, as
Figure 10-1 illustrates.

302 javascript & jquery: the missing manual

Organizing
Information in
Tabbed Panels

Figure 10-1:
Tabbed panels are
common on e-com-
merce sites, where
information is often
displayed in separate
panels. This example
(just a fragment of a
complete web page)
presents a product
overview, product
specifications, and
shipping information
in separate panels, so
visitors can click a tab
to see the information
that interests them.

Tabbed panels, like all user interface widgets, are composed of HTML, CSS, and
JavaScript programming. You have numerous ways to tackle each of these compo-
nents, but read on for a straightforward approach.

The	HTML
There are two main components to tabbed panels: the tabs, which are buttons pre-
sented side-by-side at either the top or bottom of the panels, and the panels, which
are <divs> containing the content you want to display. In addition, a few other tags
are useful to keep everything organized and to make programming easier:

• Wrapper element. This isn’t strictly necessary, but having a <div> tag that
wraps around the tabs and panels can help mark the beginning and end of the
tabbed panels and can make programming easier if you include more than one
tabbed panel on a page. The HTML for this is simple:
<div class="tabbedPanels">

</div>

Adding a class to the div helps identify the div, as well as providing “hooks” for
styling the elements inside the tabbed panels and for using jQuery to identify
and select the tabs and panels. If you only have a single tabbed panel on a page,
an ID works just as well.

• Tabs are commonly structured as unordered list items, with links inside them:

303chapter 10: expanding your interface

Organizing
Information in
Tabbed Panels

<ul class="tabs">
 Overview
 Specifications
 Shipping

The links inside the list items are in-page links pointing to IDs assigned to the
panels (described next). Linking to the panels makes it possible for a visitor who
doesn’t have JavaScript enabled to jump directly to corresponding content—just
as a regular in-page link that simply scrolls the page up to the associated point
on the page.

Note: If you’re not familiar with in-page links, you can find a short explanation at www.yourhtmlsource
.com/text/internallinks.html.

• Panel wrapper. A <div> tag that surrounds all the panels is helpful for styling
and to provide a way to zero in on the tabs using jQuery:
<div class="panelContainer">

</div>

• Panels are where the content goes. Each panel is represented by a <div> tag and
can hold any content you’d like: headlines, paragraphs, images, and other divs.
Each <div> should have a unique ID that matches the ID used in the HREF for
the tab links (see above):
<div class="panel" id="panel1">
 <!-- put content here -->
</div>
<div class="panel" id="panel2">
 <!-- put content here -->
</div>
<div class="panel" id="panel3">
 <!-- put content here -->
</div>

Adding a class to each panel div is a good idea—class=“panel”, for example—
since it provides another way to style these elements and select them with
jQuery.

All of the panel divs go inside the panel wrapper div and the main wrapper element.
Altogether the HTML for the basic structure of set of three tabbed panels would
look like this:

<div class="tabbedPanels">
 <ul class="tabs">
 Overview
 Specifications
 Shipping

 <div class="panelContainer">
 <div class="panel" id="panel1">
 <!-- put content here -->
 </div>

www.yourhtmlsource.com/text/internallinks.html
www.yourhtmlsource.com/text/internallinks.html

304 javascript & jquery: the missing manual

Organizing
Information in
Tabbed Panels

 <div class="panel" id="panel2">
 <!-- put content here -->
 </div>
 <div class="panel" id="panel3">
 <!-- put content here -->
 </div>
 </div>
</div>

The	CSS
The CSS for tabbed panels lets you create the tab effect (side-by-side buttons) as well
as style the panels to make them appear to be a cohesive whole, integrated with
the tabs.

• The container. You don’t need to set a style for the <div> tag that surrounds all
the other tabbed panels code (in fact, you don’t actually need that div at all).
However, it is handy to create a style if you’d like to constrain the width of the
tabbed panels to a certain size, perhaps to place a tabbed panel next to another
page element or to place two sets of tabbed panels side-by-side. In this case, you
can create a style and set its width property like this:
.tabbedPanels {
 width: 50%;
}

• The bulleted list and list items. Because bulleted lists are normally indented,
you need to remove any left and right padding from them, if you want the tabs
to butt up to the left edge. In addition, to get the tabs to appear side-by-side,
instead of on top of each other, you must float the list items. Finally, since list
items normally have bullets next to them, you should remove them. These basic
styles do the trick:
.tabs {
 margin: 0;
 padding: 0;
}
.tabs li {
 float: left;
 list-style: none;
}

Note: The CSS code listed here applies to the HTML listed above. In other words, .tabs refers to the
bulleted list—the <ul class=”tabs”> HTML—while .tabs li refers to list items inside of that tag.

• The tabs themselves are represented by the <a> tags inside the list items. There
are a few properties you definitely want to set for these. First, you’ll want to
remove the underline that normally appears under links; next you’ll want to set
the display property of the links to block so padding and margin properties
applies to them. Here’s a basic style:

305chapter 10: expanding your interface

Organizing
Information in
Tabbed Panels

.tabs a {
 display: block;
 text-decoration: none;
 padding: 3px 5px;
}

Of course, you’ll probably want to add more properties to really make the tabs
look great: background-color to give the tabs life, fonts, font colors and sizes to
make the tab text stand out, and so on.

• The active tab. It’s a good idea to highlight the tab associated with the currently
displayed panel. This is a kind of “you are here” signal that identifies for the visi-
tor the information in the panel. A common technique is to create a class style
that jQuery applies dynamically after a visitor clicks the tab. There’s no manda-
tory properties for this style, but giving the active tab the same background
color as a panel (and making the regular tabs style a color different than the
panels) creates a visual unity between the selected tab and its panel:
.tabs a.active {
 background-color: white;
}

Tip: A common technique is to add a border around the panels and around the tabs. When you click a
tab, the bottom border of the tab disappears and the tab appears to blend in with the panel (see Figure
10-1). To make this happen, first add to the .tabs a style a border and set the bottom margin to -1px.
The negative value moves the tabs down one pixel, actually overlapping the panels. Then, give the tabs
a.active style a bottom border color that matches the background color of the panels—the border will
still be there, but because it matches the background color of the panel and overlaps the top border of
the panel, it will appear as if the tab and panel are one unit (you also need to add position: relative
to the style for this to work in IE8 and earlier). Finally, add a border to the panel container—make it the
same style, width, and color as the border for the .tabs a style. The tutorial on page 307 shows this effect
in action.

• The panel container. The style for the div tag that surrounds all of the panels
requires is important: Because all of the tabs are floated to the left (so they ap-
pear side-by-side), you must “clear” the panel container. Otherwise, it will try to
wrap around the right side of the tabs, rather than appear below them:
.panelContainer {
 clear: left;
}

You can also use this style to format the appearance of the panels. Because the
panel container is a box around the panels, you could add a background color,
border, padding, and so on for this style.

• The panels. As mentioned in the previous bullet point, you can use the panel
container style to create the basic format for panels—border, background color,
and so on. However, you can, if you want, apply that formatting to the indi-
vidual panel divs by creating a .panel style.

306 javascript & jquery: the missing manual

Organizing
Information in
Tabbed Panels

• Panel content. To style the content inside of a panel, you can use descendent
selectors to target the tags inside each panel div. For example, if you want to
make a <h2> tag inside an orange panel displaying the Arial font face, you could
create this style:
.panel h2 {
 color: orange;
 font-family: Arial, Helvetica, sans-serif;
}

To format a paragraph inside a panel, create a style named .panel p.

The	JavaScript
With the HTML and CSS in place, you see tabs along the top, and three divs (the
panels) below them stacked one on the next as diagrammed in Figure 10-2. The
basic look is in place. You just need to add the programming to make the panels
open and close, and to change the class on the tabs to make one the “active” tab and
the others regular tabs. The basic program involves:

1. Add a click event to the links inside the tabs.
Tabbed panels are all about a visitor interacting with the tabs: Click a tab to
reveal a panel; click another tab to reveal another panel.

2. Add an anonymous function to the click event to:
• (a) Hide the currently visible panel.
• (b) Remove the active class from the previously selected tab.
• (c) Add the active class to the just-clicked tab to make it active.
• (d) Display the panel associated with that tab.

3. Trigger the click event on the first tab.
This step is necessary because when the page first loads, all the panels are visible
and no tab is selected. You could just write the code to highlight the first tab and
hide all the panels except the first one, but you don’t need to—the anonymous
function for the click event (step 2) does that for you, so you need only pro-
grammatically “click” that tab, and trigger the function.

So, in a nutshell, that’s how its done. Now you’ll go through the programming step-
by-step in the following tutorial.

307chapter 10: expanding your interface

Organizing
Information in
Tabbed Panels

Figure 10-2:
The HTML structure for tabbed pan-
els is really pretty simple: a div tag,
an unordered list, some links, and
more div tags.

<div class=”tabbedPanels”>

<div class=”panel” id=”panel1”>

<div class=”panel” id=”panel2”>

<div class=”panel” id=”panel3”>

<ul class=”tabs”>

<div class=”panelContainer”>

Tabbed	Panels	Tutorial
Now that you understand the basics of creating a navigation menu, here’s how to
make it happen. In this tutorial, you’ll add CSS and JavaScript to transform the basic
HTML menu list shown on page 303 into a navigation bar.

Note: See the note on page 29 for information on how to download the tutorial files.

1. In a text editor, open the file tabs.html in the chapter10 folder.
This file contains the HTML described on page 302: a container div, an unor-
dered list of links for the tabs, a div to contain the panels, and one div for each
panel. The basic CSS formatting is in place as well. If you view the page in a web
browser, you’ll see three tabs and the content for three panels (each panel is
stacked on top of the other).

308 javascript & jquery: the missing manual

Organizing
Information in
Tabbed Panels

Note: To make the CSS for the tabbed panels as clear as possible, we’ve put it directly in this page’s
HTML in an internal stylesheet. If you want to reuse this CSS for your own tabbed panels, it’s best to put it
into the main external stylesheet used by your site.

The jQuery file is already linked and the $(document).ready() function is in
place, so the first step is to hide the panels.

2. Click in the empty line inside the $(document).ready() function and add the
following code in bold below:
$(document).ready(function() {
 $('.tabs a').click(function() {

 }); // end click
}); // end ready

$(‘.tabs a’) selects all the <a> tags inside the unordered list (it has a class of tabs).
(The click() function is described on page 162.) At this point you have an empty
anonymous function, so you’ll begin filling it with programming. First, you’ll
add a statement to make your code just a tad more efficient.

3. Inside the anonymous function, add the bolded code below:
$('.tabs a').click(function() {
 $this = $(this);
}); // end click

As mentioned on page 149, when inside an event handler’s anonymous func-
tion, $(this) refers to the element the event is added to: In this case, $(this) refers
to the tab the visitor clicks. Each time you use $() to select an element, you’re
actually calling the jQuery function, forcing the web browser to execute many
lines of JavaScript programming. If you need to use the same selector more than
once inside a function, it’s a good idea to save it into a variable. In this example,
$this is simply a variable created by the programmer (that’s you).
Storing the value of $(this) into that variable means that anytime you need to
access the link, you only need to use the variable $this—you don’t need to make
jQuery select the link all over again. In other words, if you have $(this) twice in
a function, then the browser has to run the jQuery function two times to select
the exact same element. If you first store $(this) into a variable—$this—you can
use that variable multiple times in your code without forcing the browser to do
extra work (page 404 describes the benefits of storing jQuery selectors in vari-
ables in greater depth).
Now, you’ll hide the panels, and activate the clicked tab.

4. Add the code listed in lines 3 and 4 below.
1 $('.tabs a').click(function() {
2 $this = $(this);
3 $('.panel').hide();
4 $('.tabs a.active').removeClass('active');
5 }); // end click

309chapter 10: expanding your interface

Organizing
Information in
Tabbed Panels

Line 3 hides the panels. Because each panel is a <div> tag with the class of panel,
$(‘.panel’) selects them all and jQuery’s .hide() function (page 187) hides them.
You need to do this because otherwise, when you open one panel, the previous
panel will still be visible.
Line 4 removes the active class from any of the links inside the tabs. On page
305, we discussed how creating an active class style will let you provide a dif-
ferent look for the tab the user clicks (a sort of “you are here” look). Of course,
when a visitor clicks a tab to make it active, you also need to remove that class
from the previously selected tab—that’s what line 4 does using jQuery’s remove-
Class() function (page 142). Next, you’ll highlight the tab the visitor just clicked.

5. Add the code listed in line 5 below.

1 $('.tabs a').click(function() {
2 $this = $(this);
3 $('.panel').hide();
4 $('.tabs a.active').removeClass('active');
5 $this.addClass('active').blur();
6 }); // end click

Remember that $this is a variable you created in line 2, and it holds a reference
to the link the visitor clicks. So $this.addClass(‘active’) adds the active class to
the link: The web browser will use the CSS to style that tab. The .blur() at the
end uses jQuery’s chaining feature discussed on 137. It’s just another function
that’s run after the .addClass(). The .blur() function removes the focus of a link
(or form field): In this case, it also removes the fuzzy line that web browsers
display around links that a visitor has clicked or tabbed to. Without it, an active
tab wouldn’t look very good.
This function is almost done: You just need to make the panel appear.

6. Add the code listed in lines 6 and 7 below.

1 $('.tabs a').click(function() {
2 $this = $(this);
3 $('.panel').hide();
4 $('.tabs a.active').removeClass('active');
5 $this.addClass('active').blur();
6 var panel = $this.attr('href');
7 $(panel).fadeIn(250);
8 }); // end click

Every tab is really a link pointing to its associated panel. Remember, a panel’s
HTML looks something like this: <div id=“panel1” class=“panel”>; and every
tab’s HTML looks like something like this: . Notice that the
href value looks just like a CSS ID selector; since jQuery uses CSS selector to se-
lect a page element, you can retrieve the link’s HREF and use it to locate the panel
you wish to display. Line 6 creates a new variable—panel—to hold the HREF
property of the link (using jQuery’s .attr() function discussed on page 146).
Line 7 uses the HREF to select the panel, and then fade it into view using
jQuery’s fadeIn() function (page 187). You could replace fadeIn() with one of
jQuery’s other effect functions like show(), slideDown(), or animate().

310 javascript & jquery: the missing manual

Organizing
Information in
Tabbed Panels

Now that the programming is in place, if you trigger a click when the page
loads, then you can run this function, hide the panels, select a tab and display
its associated panel. Fortunately, jQuery makes it easy to simulate any event and
trigger an event handler.

7. After the click() function, add one more line of code to trigger a “click” on the
first tab.

1 $('.tabs a').click(function() {
2 $this = $(this);
3 $('.panel').hide();
4 $('.tabs a.active').removeClass('active');
5 $this.addClass('active').blur();
6 var panel = $this.attr('href');
7 $(panel).fadeIn(250);
8 }); // end click
9 $('.tabs li:first a').click();

This code uses a pretty complex selector—.tabs li:first a—to select the first tab.
Basically, you can read the selector (like all descendent selectors) from right
to left. On the right side, a indicates that our goal is to select an <a> tag. In
the middle, li:first is a first child pseudo-element, it matches an tag that is
the first child of another tag. Since the tabs are constructed by a bulleted list, the
li:first means the first list item, or in this case, the first tab. Finally, .tabs makes
sure we’re selecting a link inside a list item that’s part of our tabbed panels. This
prevents us from accidentally selecting a link inside another bulleted list (like a
navigation bar) elsewhere on the page.
Finally, you can use the .click() function not just to set a function to respond to
the click event, but to actually trigger the event. So line 9 is basically saying “web
browser, click the first tab,” which triggers a whole cascade of actions: hiding
the panels, highlighting the tab, and fading the proper panel into view. Whew!
You’re almost there. If you preview the page in a web browser, you may notice
one small problem. Because the tabs are actually in-page links, if you view the
page in a small monitor, you might see the browser jump down to the panel,
in addition to displaying it. You need to tell the browser not to follow the link.

8. Add return false; to the end of the click handler (see line 9 below). The com-
pleted code should look like this:

1 $(document.ready(function() {
2 $($('.tabs a').click(function() {
3 $this = $(this);
4 $('.panel').hide();
5 $('.tabs a.active').removeClass('active');
6 $this.addClass('active').blur();
7 var panel = $this.attr('href');
8 $(panel).fadeIn(250);
9 return false;

10 }); // end click
11 $('.tabs li:first a').click();
12 }); // end ready

311chapter 10: expanding your interface

Organizing
Information in
Tabbed Panels

9. Save the page and try it out in a web browser.

The completed tutorial should look like Figure 10-3. You can add more tabs
and more panels simply by inserting additional list items to the unordered
list containing links that point to new div tags for the new panels.

Note: You’ll find a completed version of this tutorial—complete_tabs.html—in the chapter10 tutorial
folder. In addition, a more advanced version of the tabbed panels code, which allows for multiple tabbed
panels on a single page can be found in the complete_complex_tabs.html file—it uses some of jQuery’s
advanced DOM Traversal functions discussed on page 413.

Figure 10-3:
Tabbed panels
provide an elegant
way to provide access
to lots of information
while preserving web
page real estate.

312 javascript & jquery: the missing manual

Adding a Content
Slider to Your Site

UP TO SPEED

The jQuery UI Project
You’ll find a more advanced version of tabbed panels as
part of jQuery UI. An official project of the jQuery team,
jQuery UI aims to provide plug-ins that solve basic user
interface problems: accordions, tabs, dialog boxes, calen-
dar widgets, and draggable page elements. The goal is to
provide a single plug-in that solves the majority of user
interface problems for web applications. The project has
its own website (http://jqueryui.com/), where you can find
the latest code, along with demonstrations and a link to
documentation on the main jQuery website.

jQuery UI provides a lot of tools for web designers, and
even supports CSS themes, which let you create a uni-
form look and feel across all of the jQuery UI elements.
jQuery UI is pretty complex and contains a lot of different
elements. You can customize the jQuery UI files to fit your
needs—leaving out components you don’t need to save on

file size and download speed—and even create your own
custom CSS themes to match the colors, fonts, and textures
of your website. An online download tool—http://jqueryui
.com/download—helps you with this process.

The previous edition of this book used jQuery UI in several
chapters, but since that time, the jQuery UI team decided
to rewrite all of the code for the project and add a host of
new and exciting user interface widgets and utilities. Unfor-
tunately, the new version of jQuery UI (version 1.9) wasn’t
out at the time of this writing, and so you won’t waste time
learning a bunch of user interface widgets that are destined
to be replaced in the near future, this book doesn’t cover
jQuery UI as it stands today.

However, jQuery UI has great promise and is worth keep-
ing your eye on. Visit the jQuery UI site to see whether
version 1.9 is out. If so, go check it out.

Adding a Content Slider to Your Site
Another tool web designers use to battle information overload is a content slider—
a simple slideshow-like interface for showing one picture or chunk of content at a
time. Many information-heavy sites like Microsoft.com use sliders to show images,
text, and links in bite-sized chunks that slide across the screen (Figure 10-4). A slider
is like a tabbed panel, except that the panels are usually the same size, are animated
across the screen in a sliding motion, and often run on a timer, with the panels slid-
ing across the screen every couple of seconds. Sliders are commonly used on home
pages to keep the page simple and attractive while still highlighting lots of content.
Frequently, they act like teasers, advertising content or products on other pages in
the site. Clicking a panel in a slider usually leads to another web page.

Content sliders require mastering a few elements of JavaScript and jQuery program-
ming including animations, timers, and manipulating CSS and HTML. While it’s
possible to program your own slider, there are many jQuery plug-ins that offer a
wide range of useful features. One of the most versatile jQuery slider plug-ins is
called AnythingSlider (available at https://github.com/ProLoser/AnythingSlider/).

http://jqueryui.com/download
http://jqueryui.com/download

313chapter 10: expanding your interface

Adding a Content
Slider to Your Site

Figure 10-4:
To minimize on-screen clutter,
sites like Microsoft.com use
content sliders (outlined in
black) to display a single image
or chunk of content at a time.
In this example, the image
outlined can slide out of sight
to the left, revealing another
image with more information.

Using	AnythingSlider	
AnythingSlider requires several files to work: jQuery (of course), an external
JavaScript file with the slider programming, a CSS file for styling the basic slider
effect, and an image file for the sliders controls (next and previous buttons). You
can download Anything Slider from https://github.com/ProLoser/AnythingSlider/.
(We’ve also included a copy of the necessary files with the tutorial files for this
chapter.) The basic process for using the plug-in is straightforward:

1. Attach the anythingslider.css file to your web page.
This external CSS provides formatting instructions for the slider’s navigation
buttons, as well as behind-the-scenes styles for placing the individual slides.
You’ll be able to modify basic elements of the slider by altering styles in this file
(see below).

2. Link to the jQuery file.
jQuery provides the basic toolset AnythingSlider needs. As when using any
jQuery plug-in, you must load the jQuery JavaScript file first. If you load jQuery
after the plug-in file loads, it won’t work.

3. Link to the AnythingSlider file.
This file contains the basic programming to transform your HTML into a slider.

4. Add HTML.
AnythingSlider doesn’t require any complex HTML. You only need add a con-
tainer div with the ID of slider—<div id=“slider”>—and, inside that div, insert
one div for each panel, or “slide.” This is very similar to how panels are set up
with tabbed panels (page 302).

314 javascript & jquery: the missing manual

Adding a Content
Slider to Your Site

5. Add <script> tags and the $(document).ready() function, and then call the
AnythingSlider function:
One of the pleasures of working with jQuery plug-ins is that they often require
very little code to work. In this case, adding simple code to the page after the
link to the AnythingSlider file (step 3) is all you need:
<script>
$(document).ready(function) {
 $('#slider").anythingSlider();
}); // end ready
</script>

There are many ways to customize the AnythingSlider effect, as you’ll see later in
this chapter. But, first you’ll take the plug-in for a spin.

AnythingSlider	Tutorial
Creating a basic slider is really quite easy. This tutorial will take you through the
process. You can use any HTML editor you’d like for this.

Note: See the note on page 29 for information on how to download the tutorial files.

1. In a text editor, open the file slider.html in the chapter10 folder.
The first step is to add AnythingSlider’s CSS file.

2. Click in the empty line following <link href=“../_css/site.css” rel=“stylesheet”>,
and type:
<link rel="stylesheet" href="anythingSlider/anythingslider.css">

This line loads the anythingslider.css file, which contains specific styles for for-
matting the slider. You’ll revisit this file later when we look at how to update the
look of the slider. Next, you’ll link to the necessary JavaScript files.

3. Below the line of code you just added, type:
<script src="../_js/jquery-1.6.3.min.js"></script>
<script src="anythingSlider/jquery.anythingslider.min.js"></script>

The first line loads the jQuery file, while the second loads the plug-in file. Now
it’s time to add the HTML.

Tip: For this tutorial, the JavaScript, CSS, and image files for the AnythingSlider plug-in are all stored in-
side a folder named anythingSlider in the chapter10 tutorial folder. Keeping all of the files required for the
plug-in together in a specific folder is a good way to make sure you don’t misplace one of the files; it also
makes it easy to reuse the plug-in on another site. If you like this effect, you can just copy the anything-
slider folder to your site (put it inside the main root folder or inside a folder dedicated to JavaScript files).

4. Locate the heading 1 tag—<h1>Anything Slider</h1>—in the code, and on
the blank line below it, type:

315chapter 10: expanding your interface

Adding a Content
Slider to Your Site

<div id="slider">

</div>

This is a <div> tag (an HTML tag meant to mark a region or division in a web
page). This particular div represents the slider itself. Inside it, you’ll add more
<div> tags, one for each slide you wish to display.

5. Inside the slider div (that is, between the opening <div> and closing </div>
tags), type:
<div>
<img src="images/pumpkin.jpg" width="700" height="390"
alt="Pumpkin">
</div>

This is a second div, containing a link and image. Clicking the image takes you
to another page: This is a common approach with content sliders, which often
act as a kind of animated banner ad for your site. Each slider acts as a teaser for
other content, so visitors click a slide to jump to an article or other section of
the site.
With AnythingSlider, you can add any HTML you’d like. You’re not limited to
one large image. You could have text, images, other div tags—anything you’d
like to place inside the slide.

6. Add two more <div> tags inside the slider div:
<div>
<img src="images/grapes.jpg" width="700" height="390"
alt="Grapes">
</div>
<div>
<img src="images/various.jpg" width="700" height="390"
alt="Various">
</div>

These two divs represent two more slides. You can add as many slides as you’d
like. Now it’s time to add some programming.

7. Near the top of the file, add an empty line after the second <script> tag, but
before the closing </head> tag, and type:
<script>
$(document).ready(function() {
 $('#slider').anythingSlider();
});
</script>

Believe it or not, all you need to do is select the div containing the slides—
$(‘#slider’)—and apply the anythingSlider() function. The plug-in takes care of
the rest.

8. Save the file, and open it in a web browser.
The page should look like Figure 10-5. (If it doesn’t, double-check your code.
You can also compare your work to the file complete_slider.html, which is a com-
pleted version of this tutorial.) Try out the different controls: Click the right

316 javascript & jquery: the missing manual

Adding a Content
Slider to Your Site

arrow button to move to the next slider to the right, the left arrow button to
move back one slider, the numbered buttons to jump to a specific slider, and the
start button to begin an automated slideshow.

Figure 10-5:
Using the AnythingSlider
jQuery plug-in, you can
quickly create an interac-
tive slideshow to highlight
pages and products
throughout your site.

Customizing	the	Slider	Appearance
As you can see, it’s pretty easy to use AnythingSlider. Of course, the slider’s “out-
of-the-box” appearance may not match your site’s design, and you may not want
or need all of its features (like the automated slideshow or the forward and back-
ward buttons). AnythingSlider’s appearance can be changed in a few ways: editing
a graphics file, editing the style sheet, and setting options for the plug-in (discussed
in the next section).

Using a technique called CSS Sprites, a single graphic file does quintuple-duty as
both the regular and “hover” states of the back and forward arrows, as well as shad-
ow background of the numbered buttons and the “Start” button (for an introduction
to CSS Sprites, visit http://css-tricks.com/158-css-sprites/). You can edit this graphics
file (each arrow is 45×140 pixels, the drop shadow) and add your own arrow images.

You can also edit the stylesheet to customize the appearance of the slideshow. Here’s
a list of some of the most common formatting changes and styles you may need to edit:

• Height and width of the slider. The first style in the anythingslider.css file—
#slider—controls the overall width and height of the slideshow. You can adjust
the width value to allow for either a wider or thinner slideshow, and the height
value if your slides are shorter or taller than the default 390 pixels.

317chapter 10: expanding your interface

Adding a Content
Slider to Your Site

• Color of the navigation buttons. The numbered buttons at the bottom of the slid-
er are normally green. If you don’t like that color, edit this long-winded style: div
.anythingSlider.activeSlider .anythingControls ul a.cur, div.anythingSlider.active
Slider .anythingControls ul a. Change the background-color from #7C9127 to a
color that matches your site. If you want to change the font color, you can also
add the color property with the color you want. For example:
color: #F44439;

• Rollover color for navigation buttons. You can give the navigation buttons a
new background-color, change the font or whatever you’d like by editing the div
.anythingSlider .anythingControls ul a:hover style. Currently, it simply removes
the background-image (the drop shadow) from the button.

• Currently selected navigation button. You can highlight the button associated
with the currently displayed slide by adding a style named div.anythingSlider
.activeSlider .anythingControls ul a.cur to the style sheet and setting a different
background color, font, and so on. Make sure you either place this style after
the style listed above for the “Color of the navigation buttons” or edit that style
by removing div.anythingSlider.activeSlider .anythingControls ul a.cur from it.
Since the style listed above already has a background color associated with it, it
will override your new style, unless you place the new style later in the style sheet.

• Colors of the start and stop buttons. The button used to for starting and stop-
ping an automated slideshow is controlled by two styles. To change the green
background color of the start button as well as the font color, edit the div.any-
thingSlider .start-stop. To change the red color of the stop button, edit the div
.anythingSlider .start-stop.playing style.

• Remove drop shadows and make other changes to navigation buttons. If
you don’t like the drop shadows that appear on the navigation buttons and the
start/stop button, then edit the div.anythingSlider .anythingControls ul a and div
.anythingSlider .start-stop styles: Remove the background-image property. You
can also edit the border-radius, -moz-border-radius, and –webkit-border-radius
properties on these styles to remove or increase the rounded corners on this
button. These styles control the basic look of the buttons, so they’re worth play-
ing around with to see what new looks you can create.

• Green borders above and below the slideshow. The slider has a green, 3-pixel
border above and below it. Edit the div.anythingSlider .anythingWindow style
to change this. Simply remove the border-top and border-bottom properties to
remove the borders completely, or just alter their settings to change the color
and width of the borders.

• Placement of the arrows. You can control where the back and forward arrows
are placed by editing the div.anythingSlider .back (for the left arrow) and div
.anythingSlider .forward (for the right arrow) styles. In addition, the div.any-
thingSlider .arrow style sets some basic properties for both arrows, including
their position in the middle of the slide. If, for example, you want the arrows closer
to the top of the slider, simply edit the div.anythingSlider .arrow style and change
top: 50% to something like top: 20%, or even use a pixel value like top: 45px;.

318 javascript & jquery: the missing manual

Adding a Content
Slider to Your Site

Customizing	the	Slider	Behavior
You can make a lot of changes to the slider simply by editing the CSS file. But to
make fundamental changes to how the slider works, you need to set a few options for
the plug-in. To do this, you pass an object literal (page 145) to the plug-in:

{
 buildArrows : false,
 startText : "Start slideshow",
 stopText : "Stop slideshow"
}

In this example, buildArrows is an AnythingSlider option, and false is the setting.
This setting prevents AnythingSlider from adding the left and right arrows. You add
a comma at the end of each option/value pair except for the last one (notice that
there’s no comma after stopText : “Stop Slideshow”.

You then place this object literal inside the function call to the plug-in. For example:
$('#slider').anythingslider({
 buildArrows : false,
 startText : "Start slideshow",
 stopText : "Stop slideshow"
});

Here are some of the most useful options.

• Hide navigation arrows. To hide the left and right arrows, set the buildArrows
option to false like this:
buildArrows : false

• Change slideshow labels. To change the text that appears on the start and stop
buttons, set the startText and stopText options like this:
startText : "Start slideshow",
stopText : "Stop slideshow"

• Turn off the autoplay option. You might not want the start and stop buttons to
appear, preferring that visitors manually select the slide they wish to view. In
this case, set the buildStartStop setting to false:
buildStartStop : false

• Vertical slideshow. To have slides move vertically up and down instead of left to
right, set the vertical option to true:
vertical : true

• Autoplay. To have the slideshow feature automatically begin when the page
loads, set the autoPlay option to true:
autoPlay : true

Automatically beginning a slideshow when the page loads is a particularly com-
mon feature on websites that include sliders, since it exposes visitors to more
content without requiring them to hit a “play slideshow” button.

319chapter 10: expanding your interface

Determining the Size
and Position of Page

Elements
• Variable size slides. If each slide holds different amounts of content, you can

make the slider window change size to grow or shrink the content of each slide.
For example, say the first slide is a div with a single paragraph in it, while the
second slide was a div with a headline, two large images, and three paragraphs.
If you set the resizeContents property to true, then AnythingSlider will change
the size of the slider for each slide—in the above example, the slider would start
off shorter, displaying the single paragraph. Hitting the next button moves to
the next slide with a lot more content, so the slider grows in height. You set the
option like this:
resizeContents: true

To see some of these options in action, open the complete_slider2.html file in the
tutorial files.

As you can see, AnythingSlider is easy to add to a site, and just as easy to customize.
We’ve just scratched the surface of what this plug-in can do. You can embed video,
add special effects, and add custom programming to make it work exactly like you
want it to. Check out the AnythingSlider Wiki for more information at https://github
.com/ProLoser/AnythingSlider/wiki.

Determining the Size and Position of Page Elements
When you dynamically add to and alter a web page with JavaScript and jQuery, it’s
often handy to know the size and position of elements on a page. For example, you
might want to place an oh-so-common overlay on top of a page (the effect where the
page seems to dim, as shown in the FancyBox tutorial on page 231). To do that, you
place an absolutely positioned <div> tag so that it covers the browser window. To
fully cover the window, you need to make sure the div is the same size as the window,
so you must first determine the width and height of the browser window.

Likewise, if you want to create a tooltip effect—where a small box with information
pops up when a visitor mouses over something on the page—you need to determine
the position of the cursor on the screen, so you can place the tooltip.

Determining	the	Height	and	Width	of	Elements
jQuery provides .height() and .width() functions to find the height and width of page
elements. By providing the proper selector, you can determine the height and width
of any tag on the page and even determine the size of the browser window, and the
size of the document itself.

• Height and width of browser window. If you want to retrieve the height and
width of the browser window (often referred to as the viewport), use the
$(window) selector and the height() and width() functions like this:
var winH = $(window).height();
var winW = $(window).width();

The code above retrieves the width and height, and stores them into two vari-
ables. Getting the width and height of the browser window is useful when you

https://github.com/ProLoser/AnythingSlider/wiki
https://github.com/ProLoser/AnythingSlider/wiki

320 javascript & jquery: the missing manual

Determining the Size
and Position of Page
Elements

want to make sure you don’t position an element outside the visible area of the
browser window.

• Height and width of the document. The document isn’t the same thing as the
browser window and most often has a different height and width. The docu-
ment represents your web page: If the page has just a little bit of content—a
single paragraph, for example—the document is the height of that paragraph
(plus top and bottom margins). On a large monitor, the document’s height
would be less than the height of browser window.
Conversely, if a web page has a lot of content, so a visitor has to scroll down the
page to read it all, then the document is taller than the browser window. Like-
wise, if you’ve set a style for the body tag or for a <div> tag containing the con-
tent of the page and set the width of that style to, say, 1500 pixels, the document
might be wider than the browser window. To find the width and height for the
document, use the $(document) selector and the height() and width() functions:
var docH = $(document).height();
var docW = $(document).width();

You can also use the height() and width() functions on regular HTML elements like
paragraphs, divs, and images, however, it may not always give you the information
you’re after. The height() and width() functions return the values of the CSS height
and width properties—these are not necessarily the same as the height and width of
the element on the page. In CSS, the width and height properties define the space
given to the content inside a tag—the text inside a paragraph tag, for example.
However, if you add padding, borders, or margins to the element, then the amount
of space the element takes up on the page is greater than the element’s CSS height
and width.

To understand how this works, let’s look at some simple CSS for a <div> tag:
div {
 width : 300px;
 height : 300px;
 padding : 20px;
 border : 10px solid black;
}

Figure 10-6 shows a diagram of that div. The actual on-screen width and height of
that div is 360 pixels, since its space on the page is a total of the height (or width),
padding, and border. So the actual width is the left border + left padding + CSS
width + right padding + right border, and the actual height is the total of the top
border + top padding + CSS height + bottom padding + bottom border.

Because of these different dimensions, jQuery provides three sets of functions for
determining various widths and heights for page elements:

• width() and height() functions return the CSS width and height of the element.
For example, say your page has the CSS style listed above, and a <div> tag on it:
var divW = $('div').width(); // 300
var divH = $('div').height(); // 300

In the code above, the variables divW and divH hold the value 300—the height
and width set in the CSS.

321chapter 10: expanding your interface

Determining the Size
and Position of Page

Elements
• innerWidth() returns the width + the left and right padding; innerHeight()

returns the CSS height + top and bottom padding:
var divW = $('div').innerWidth(); // 340
var divH = $('div').innerHeight(); // 340

In the code above, the variables divW and divH hold the value 340—the height
and width set in the CSS + the padding values on either side.

• outerWidth() returns the width + the left and right padding + left and right
borders; outerHeight() returns the CSS height + top and bottom padding + top
and bottom borders:
var divW = $('div').outerWidth(); // 360
var divH = $('div').outerHeight(); // 360

In the code above, the variables divW and divH hold the value 360—the height
and width set in the CSS + the padding and border values on either side.
The outerWidth() and outerHeight() properties also take an optional argument—
true—which also takes the margins around the element into account. For ex-
ample, say the CSS for the div tag looks like this:
div {
 width : 300px;
 height : 300px;
 padding : 20px;
 border : 10px solid black;
 margin: 20px;
}

Notice the 20px margin setting. If you wanted to also include the margins into
the overall width and height calculation, you can write this jQuery code:
var divW = $('div').outerWidth(true); // 400
var divH = $('div').outerHeight(true); // 400

Which function you use depends on what you’re trying to accomplish. For example,
perhaps you want to cover some text on the page—the answer to a quiz, for in-
stance—with a black box, then, later reveal the text; one way would be to cover the
text with a div filled with black background color. In this case, you’d use the width()
and height() functions to determine the width and height of just the text (not the
padding or borders) to properly size the div before placing it over the text.

Or, say you want to create a Pong-like game—a little ball bouncing around the
screen—and want the ball to remain contained inside the borders of playing area (a
div perhaps with a border line around it). Then you need to know the area available
inside the borders so you could make sure the animated ball doesn’t cross outside
the box or over the borders. In this case, you’d use innerHeight() and innerWidth()
since the ball can move anywhere inside the box, even over any padding applied to it.

Note: Don’t use innerHeight(), innerWidth(), outerHeight(), or outerWidth() with the window
($(‘window’)) or document ($(document)) objects. Only height() and width() work with those.

322 javascript & jquery: the missing manual

Determining the Size
and Position of Page
Elements

Figure 10-6:
Width and height aren’t always straightforward when it comes to
CSS. The CSS width and height properties only dictate the space
dedicated to the content inside a tag. The overall height and
width of an element on a page is calculated by combining width
or height with any padding and borders on the element.

border
padding

content

10px
20px

300px 360px

10px
20px

10px 20px 300px

360px

10px20px

Determining	the	Position	of	Elements	on	a	Page
It’s often useful to locate the position of an element on the page: Perhaps you wish to
display a tooltip above an image when a visitor mouses over the image. The tooltip
is placed in relationship to that image on the page, so you need to determine where
on the page the image is, then place the tooltip in that spot. jQuery provides several
functions to help with this:

• offset(). The offset() function returns an object containing the left and top posi-
tions of an element from the top-left corner of the document. For example, say
you wanted to place a caption across the top of an image when a visitor moused
over the image. You’ll want to know the position of that image. Say the image
has an ID of captionImage. You could gather its top, left position like this:
var imagePosition = $('#captionImage').offset();

In this example, the variable imagePosition holds the coordinates of the image.
Those coordinates are stored in a JavaScript object and can be accessed using
the dot-syntax discussed on page 70. The left position is stored in a property
named left and the top position in a property name top:
imagePosition.top // number of pixels from the top of the document
imagePosition.left // number of pixels from the left edge of the document

Let’s say you wanted to use this information to place a div with the id of caption—
you could use jQuery’s .css() function (page 143) to set the top, left, and position
properties of the caption:

323chapter 10: expanding your interface

Determining the Size
and Position of Page

Elements

$('#caption').css({
 'position' : 'absolute',
 'left' : imagePosition.left,
 'top' : imagePosition.top
});

Note: The offset() and position() functions always return numbers representing the number of pixels
from the left and top positions. That is, even if you use ems or percentages to place an element on a
page, these two functions only retrieve the pixel position of the element.

• position(). The position() function returns an object containing the left and
top position of an element from the top-left corner of its nearest positioned
ancestor. That’s a bit of a mindful to take in, so let’s look at how it works us-
ing Figure 10-7, which displays two divs. Both are absolutely positioned—the
outerBox is positioned in relation to the document, but the innerBox, whose
HTML code is inside the outerBox div, is positioned in relation to the outer box.
The outer box is positioned in relation to the document (since it’s not nested
inside of any elements with either absolute, relative, or fixed positioning). For
the outer box, position() works just like offset, so the following code:
$('#outerBox').position() // { left : 100, top : 300 }

returns an object with a left property of 100 and a top property of 300, since
those are the values set in the CSS.
However, in the case of the inner box, which is positioned in relation to the
outer box, you’ll get two different results for offset() and position():
$('#innerBox').offset() // { left : 300, top : 550 }
$('#innerBox').position() // { left : 200, top : 250 }

In this case, offset() returns the position in relationship to the document; that
is, the inner box is 300 pixels from the left edge of the document and 550 pixels
from its top. The position() function, on the other hand, returns the CSS left and
CSS top properties for the div.

The offset() function is usually the more useful of the two, since it lets you know
where an element is in relationship to the overall web page, and provides the infor-
mation you need to place other elements on the page in relationship to the element.

324 javascript & jquery: the missing manual

Determining the Size
and Position of Page
Elements

Figure 10-7:
jQuery provides two functions that let you determine the
top and left position of an element on the page. In the
case where you have an absolutely positioned element
(#innerBox) inside another positioned element (#outer-
Box), the two functions will return different results.

position : absolute;
top: 300px;
left: 100px

position : absolute;
top: 250px;
left: 200px

document
1

2

3

<div id=”outerBox”>

<div id=”innerBox”>

Tip: You can also use the offset() function to set the position of an element on a page; just pass the function
an object with left and top values like this:

$('#element').offset({

 left : 100,

 top : 200

});

You can only use pixel values for left and top; em values—(20em)—or percentages—(20%)—won’t work.

Determining	a	Page’s	Scrolling	Position
A web page is often larger than the browser window that displays that page: Web
documents with lots of content are frequently taller and sometimes wider than the
browser, forcing visitors to scroll to see all of the page (see Figure 10-8). When a
visitor scrolls a page, some of the document disappears from view. For example,
In Figure 10-8, the web page doesn’t fit in the browser window, the document is
scrolled in left and up, so the top of the page and left side of the page are out of view.
This means the top-left corner of the browser window isn’t the same as the top-left
corner of the document. If you tried to place a new element like an animated banner
at the top of the screen, you’d run into trouble if you merely set the left and top posi-
tion of the element to 0—you’d actually be placing it at the top of the document, but
outside of the browser window.

325chapter 10: expanding your interface

Determining the Size
and Position of Page

Elements

Figure 10-8:
Often, a web page
won’t completely
fit inside a visitor’s
browser window. The
visitor then has to
scroll to see other parts
of the page. But even
though you only see
part of the document,
it’s still always there in
its entirety.

DocumentBrowser

.scrollTop()

.scrollLeft()

Fortunately, jQuery supplies two functions that let you determine how much the
page has scrolled from the top and from the left (in other words, how many pixels
of document exist above and to the left of the browser window). To determine how
much of the document is above the browser window, use this code:

$(document).scrollTop()

To determine how much of the document is off the screen to the left, use this code:
$(document).scrollLeft()

Both functions return a pixel value that you can use to position another element on
the page. For example, if you want to position a pop-up window in the center of the
page, even after someone has scrolled down, you need to determine how far down
the visitor has scrolled and move the pop-up window that many additional pixels
down the page. In the case of pop-up tooltips, you need to be careful when position-
ing a tooltip on a page that the visitor has scrolled down: It’s easy to accidentally po-
sition the tooltip in a space on the page, but outside the visible area in the browser’s
viewport. In fact, in step 12 of the next tutorial on page 334, you’ll see how to use
the scrollTop() to avoid positioning a tooltip above the viewable area of the top of the
browser window.

326 javascript & jquery: the missing manual

Adding Tooltips

Adding Tooltips
Tooltips are a common way to provide supplemental information. They are small
pop-up windows triggered when a visitor mouses over a link, word, photo or any
page element. They’re often used to show a definition for a word, a caption for a pho-
to, or even more detailed information like the time, cost, and location for an event.

The basic idea behind a tooltip is pretty straightforward: mouse over an element,
display another element (usually a <div> tag) near the mousedover element; mouse
off the element and the tooltip disappears. You have learned all the programming
needed to do this, so we’ll take you through the process in a step-by-step tutorial.

You’ll use a combination of CSS, HTML, and JavaScript to produce the effect shown
in Figure 10-9. You use HTML to both identify a tooltip trigger (the thing you
mouse over) and to construct the tooltip. You use CSS to provide the basic look for
the tooltip box and finally JavaScript to hide the tooltips when the page loads. You
also add a hover event handler to all the tooltip triggers on the page.

Figure 10-9:
Tooltips are boxes
with supplemental in-
formation. They pop
onto the page when
a visitor mouses over
another element—a
trigger—on the page
(circled) and then
disappear when the
visitor mouses off the
element.

The	HTML
There are two components to a tooltip: the tooltip itself, which is the element that
appears when the visitor mouses over the trigger. The second component, the trig-
ger, is any element like an image, link, heading, paragraph, or tag.

The tooltip is a <div> tag with the class of tooltip and a unique ID. You can put ad-
ditional HTML inside the div tag like headings, paragraphs, and images. However,
don’t insert links, since they won’t work properly: Mousing over the tooltip to click
the link also mouses off the trigger, causing the tooltip to disappear.

327chapter 10: expanding your interface

Adding Tooltips

Here’s the HTML for a basic tooltip:
<div class="tooltip" id="aardvarkTooltip">
 <h2>The Aardvark</h2>
 <p>A medium-sized, burrowing, nocturnal mammal native to Africa</p>
</div>

While you can put the tooltip divs just about anywhere in a page’s HTML (they’re
hidden from view most of the time anyway), a good spot to place them is directly
before the closing </body> tag. This location is good because it avoids any weird dis-
play problems that might arise if you put them inside another tag that has absolute
or relative positioning.

The trigger can be any element—a <h1> tag, a <div> tag, an tag. If you want
just a single word or a several words to be a trigger, you need to wrap those words in
a tag. The trigger requires two pieces of information to work:

• A class name. All of the triggers need to share the same class name—trigger, for
example. The class name is required so that our JavaScript code can identify the
triggers on the page, and apply the proper event handlers to open and close the
associated tooltip.

• Data identifying the tooltip. Each trigger has an associated tooltip. The tooltip
is a <div> tag that’s normally invisible, but is displayed when a visitor mouses
over the trigger. Each tooltip needs a unique ID, and we need a way to associate
the trigger with the proper tooltip div, so that when a visitor mouses over a trig-
ger, we know which div to show. A simple approach is to embed the ID for the
tooltip in an attribute on the trigger (add a # before the name and it’ll be really
easy to use jQuery to select the proper tooltip). HTML5 lets you embed data
into HTML tags using the data- prefix.
For example, let’s say the trigger for a tooltip was the word aardvark. Mousing
over it would open the tooltip (actually a <div> tag on the page with the ID of
aardvarkTooltip). You could wrap that word in a like this:
aardvark

HTML5’s custom data attributes feature is really quite nifty. It lets web designers
embed all sorts of information into their tags that they can later retrieve with
JavaScript. For a detailed description of the HTML5 data attributes, read http://
html5doctor.com/html5-custom-data-attributes/.
If you’re using XHTML 1 or HTML 4.01 doctypes and are worried about vali-
dation, you can’t use the data attribute. Instead you can piggy-back on a valid
HTML 4 attribute for the tag such as the title:
aardvark

Using a title attribute in this way isn’t how that attribute is meant to be used, and
some designers might not approve of this method. You’re probably better off go-
ing the HTML5 route, and using the custom data attributes.

You can put as many triggers and tooltips as you’d like in a page.

328 javascript & jquery: the missing manual

Adding Tooltips

The	CSS
Each div has a class of tooltip, so adding a .tooltip style to the page’s stylesheet will
format the overall look of the tooltip (such as background color, border, width, and
so on). Here’s a basic style that’s already in the tutorial file:

.tooltip {
 width: 25%;
 padding: 5px;
 background-color: white;
 border: 3px solid rgb(195,151,51);
 border-radius : 5px;
}

In addition, without some styling, visitors won’t know that a trigger does anything
special. This is especially true if you add a tooltip to a word inside a paragraph. You
can use CSS to make triggers stand out—adding a border, a background color, and
so on. For example, here’s a basic style that adds a bottom border to any element with
the trigger class:

.trigger {

 border-bottom: 1px dashed white;
 cursor : help;

}

The CSS cursor property is particularly handy—it controls what the cursor looks
like when the element is moused over. On regular text, a cursor looks like a selection
bar, but you can change the cursor’s appearance: The help value turns the cursor into
a question mark (good for tooltips that offer definitions of terms), while the pointer
value makes the cursor behave as it does when mousing over a link. For more cursor
options, check out www.w3schools.com/cssref/pr_class_cursor.asp.

You can also add a :hover state to the trigger so that it changes appearance when
moused over:

.trigger:hover {
 color: rgb(255,0,0);
}

The	JavaScript
At its most basic, a tooltip simply appears, then disappears as a visitor mouses over
a trigger. You’ve already learned how to make elements appear and disappear in
Chapter 6. However, there’s more going on that just that. A crucial part of any tooltip
is placing it near the trigger; this involves using the jQuery’s functions for determin-
ing the height, width, and position of an element. That’s the tricky part. To make
things clearer, this tutorial breaks down the tooltip programming into three parts:

1. Hide the tooltips.
When the page loads, all of the tooltips (the div tags at the bottom of the page)
should be hidden. You could, of course, do this in the CSS before the page loads,
but anyone browsing without JavaScript enabled wouldn’t be able to access the

329chapter 10: expanding your interface

Adding Tooltips

tooltip content. If the tooltip content isn’t necessary information, and it’s OK if
some visitors (including search engines) don’t see the tooltips, then go ahead
and hide the tooltips in your CSS:
.tooltip {
 display: none;
}

2. Add a mouseover event handler to the trigger.
This part is the heart of the tooltip functionality. When a visitor mouses over the
trigger, a couple of things need to happen:

• The associated tooltip div needs to be shown.
• The tooltip needs to be placed near the trigger. To do this, you need to de-

termine the current location of the trigger element. In addition, you want
to make sure the tooltip doesn’t cover up the trigger, and that the tooltip
doesn’t extend off the screen.

3. Add a mouseout event handler to the trigger.
This part is simple—just hide the div when the visitor mouses off the trigger.

To get a handle on how the programming works, it’s time to jump into the tutorial
and create our own tooltips.

Tooltips	Tutorial
Creating a basic tooltip is really quite easy. This tutorial will take you through the
process. You can use any HTML editor you’d like for this.

Note: See the note on page 29 for information on how to download the tutorial files.

1. In a text editor, open the file tooltip.html in the chapter10 folder.
This page already has an internal stylesheet with a few styles for formatting
the tooltips and triggers—they’re the same styles as described above on page
328. However, the page doesn’t yet have any tooltips, so you’ll add the code for
those next.

2. Locate the closing </body> tag near the bottom of the file and add the follow-
ing HTML for a tooltip:
<div class="tooltip" id="tip1">
 <h2>A Tooltip</h2>
 <p>This is the tooltip text. It's inside a div tag
 so you can put anything inside one of these.</p>
</div>

The most important part is the outer <div> tag. It contains the class tooltip,
which is necessary for both the CSS and for the programming you’ll add in a
little bit. In addition, a unique ID identifies this particular tooltip and will let
you connect the trigger you’ll add next to this tooltip. The content inside the div
can be any HTML; in this case, a headline and a paragraph.

330 javascript & jquery: the missing manual

Adding Tooltips

3. Locate the <p> tag below just below the <h1>Tooltips</h1> header about
halfway up the file. Wrap a few words in that paragraph in a tag like
this:
accusamus et iusto

The class identifies this particular span as a trigger for a tooltip—some CSS in
the page formats any tag with a trigger class in a special way. In addition, the
data-tooltip attribute identifies the tooltip HTML that this trigger belongs to.
Now you’ll add another tooltip.

4. After the <div> you added in step 2 (but before the closing </body>) tag, add:
<div class="tooltip" id="tip2">
 <h2>Another Tooltip</h2>
 <p><img src="../_images/small/yellow_h.jpg"
 alt="yellow" width="70" height="70" class="imgRight">
 This is another tooltip. Look there's even a photo here.</p>
</div>

You’ve just added another tooltip. Notice that it shares the same class as the
previous tooltip, but has its own unique ID: tip2. This tooltip also includes an
image. Now, you’ll add the trigger for this tooltip.

5. Locate another few words inside a paragraph somewhere in the file and wrap
it in a span tag, like so:
At vero eos

Make sure to use the ID for the new tooltip—#tip2. You could go on adding
more tooltips and triggers—just make sure to use a unique ID for each tooltip,
and use that same ID when setting the data-tooltip attribute for the trigger.
Now, time for some programming. This page already has the jQuery file added
to it, and the $(document).ready() function in place. The first step is to hide all
the tooltips when the page loads.

6. Click in the empty line inside the $(document).ready() function and type:
$('.tooltip').hide();

This line is pretty straightforward. jQuery’s hide() function (page 187) simply
hides all the tooltips so visitors won’t see them when the page loads. You will, of
course, want individual tooltips to appear when a visitor mouses over a trigger,
so the next step is to select all the triggers and add a mouseover event handler.

7. After the code you added in line 6, type:
$('.trigger').mouseover(function() {

}); // end mouseover

This is a basic event handler, like those discussed on page 162. In this case, all
of the elements with a class of trigger are selected and a mouseover event is as-
signed to them. This function is the heart of the tooltip programming, because
it controls showing and placing the tooltips on the screen. Identifying exactly
where on the screen to place the tooltip is a little tricky, and you’ll need a lot of
different pieces of information to figure it out. So the first part of this function
creates a bunch of variables.

331chapter 10: expanding your interface

Adding Tooltips

8. Inside the anonymous function you just added, type the bolded code below:

1 $('.trigger').mouseover(function() {
2 var ttLeft,
3 ttRight,
4 }); // end mouseover

You start by creating two variables; ttLeft holds the left position of the tooltip,
and ttTop the top position. The variables are empty at this point, since you don’t
know exactly what the values should be yet.
This way of creating variables might look a little weird; you may be used to
creating two variables using two var keywords like this:
var ttLeft;
var ttRight;

That’s perfectly acceptable, but when you’re creating a whole bunch of variables
at once, it’s common practice to use a single var keyword, followed by a bunch
of variables, separated by commas. It saves your fingers from typing var over
and over again. The comma at the end of line 3 isn’t a typo—there are a lot more
variables you need to create.

9. Add another variable to your code (line 4 below):

1 $('.trigger').mouseover(function() {
2 var ttLeft,
3 ttRight,
4 $this=$(this),
5 }); // end mouseover

$(this) refers to the trigger element, and $this=$(this) is used to store a reference
to the trigger element into a variable. You did the same thing in step 3 of the
tabbed panels tutorial on page 308. You’ll be referencing the trigger element a
lot in this function, and if you used $(this) over and over again, you’d force the
browser’s JavaScript interpreter to run the jQuery function each time, wasting
computer power and time. Instead, by storing $(this) into a variable, the jQuery
function needs to only run once to retrieve the trigger element, making your
program more efficient (see page 404 for more information on the benefits of
storing jQuery selections into variables).
Next, you’ll select the tooltip that’s associated with this trigger.

Tip: When storing a jQuery selection in a variable, it’s common practice to add a $ before the variable
name like this:

var $banner = $('#banner');

It’s not necessary to include the dollar sign—var banner = $(‘#banner’)—would work just as well. How-
ever, the dollar sign reminds you that the variable holds a jQuery selection and not just any old value like
a number or a string.

332 javascript & jquery: the missing manual

Adding Tooltips

10. Add another variable (line 5):

1 $('.trigger').mouseover(function() {
2 var ttLeft,
3 ttRight,
4 $this=$(this),
5 $tip = $($this.attr('data-tooltip')),
6 }); // end mouseover

The variable $tip holds a jQuery selection of the tooltip. The code $($this
.attr(‘data-tooltip’)) does a lot, so here’s how it breaks down. The part inside
the $()—$this.attr(‘data-tooltip’)—uses jQuery’s .attr() function to retrieve the
‘data-tooltip’ attribute for the trigger (remember, $this refers to the trigger). In
other words, this code takes the current trigger element, looks for a data-tooltip
attribute, and retrieves its value. For example, for the trigger you added in step
3, this code would return ‘#tip1’; for the trigger in step 5, this code would return
‘#tip2’.
Once the data-tooltip value is retrieved, it’s passed to the jQuery function—
that’s the outer $() in line 5 above. In other words, the code ends up being some-
thing like $(‘#tip1’) or $(‘#tip2’). Hey, that looks familiar: It’s a jQuery selection!
Once line 5 above runs, you end up with a variable named tip containing the
jQuery selection for the proper tooltip. You can then use that to show, animate,
and position the tooltip on the screen.
Next, you need to collect a lot of information in order to place the tooltip on
the screen.

11. Add lines 6–12 below to the mouseover function.

1 $('.trigger').mouseover(function() {
2 var ttLeft,
3 ttRight,
4 $this=$(this),
5 $tip = $($this.attr('data-tooltip')),
6 triggerPos = $this.offset(),
7 triggerH = $this.outerHeight(),
8 triggerW = $this.outerWidth(),
9 tipW = $tip.outerWidth(),

10 tipH = $tip.outerHeight(),
11 screenW = $(window).width(),
12 scrollTop = $(document).scrollTop();
13 }); // end mouseover

Here, you’re collecting a lot of information about the position and dimensions
of different elements. Figure 10-10 can help you picture these values: It shows a
web page (gray box) that’s larger than the browser window (outlined box). The
page is scrolled up, so part of it is out of view above the browser window, and,
because the page is longer and wider than the browser window, part of the page
extends off the right and bottom edges.
Line 6 above retrieves the top and left position of the trigger (#1 in Figure 10-
10)—since you’ll be positioning the tooltip in relation to the trigger, you need
to know this.

333chapter 10: expanding your interface

Adding Tooltips

Lines 7 and 8 use the outerHeight() function (page 321) and outerWidth() func-
tion (page 321) to retrieve the height (#2) and width (#3) (including padding
and borders) of the trigger; while lines 9 and 10 get the width (#4) and height
(#5) of the tooltip. Because you don’t want a tooltip to appear outside window,
you need to also know the width of the screen (line 11 in the code above, and #6
in Figure 10-10) and whether the visitor has scrolled the page down and if so,
how far (line 12, #7). Don’t forget the ; at the end of line 12, since this is the end
of the var statement that you started way back at line 2.

Figure 10-10:
This diagram displays a web page (gray
box) that’s taller and wider than the
browser window (black outline). The visi-
tor viewing the page has scrolled down,
so the top part of the page isn’t visible,
nor are the right edge and bottom of the
page. The tooltip is pictured at the bottom
of the document, because this is where
it is positioned when the page loads. It’s
not until the code in step 15 runs that the
program determines where the tooltip
needs to go, and then positions it there.

Document

Browser window
Trigger

1
2

3

6

7

Tooltip

4

5

You may be wondering why you need all this information. Wouldn’t it be easier
to determine where the trigger is on the page, then position the tooltip right
above it? In most cases you could do that, but there are a few situations where it
wouldn’t work out. For example, in Figure 10-11, the trigger is at the top right of
the browser window; part of the document extends above and to the left of the
window. If the tooltip is simply placed above the trigger, then most of it won’t be
visible to the visitor. In other words, the code needs to be smart: It has to figure
out whether placing the tooltip above the trigger will make it appear outside of the
browser window. If that’s the case, then the program must reposition the tooltip.
You’ll start by seeing whether a tooltip placed directly above the trigger will fit
inside the top part of the browser window.

334 javascript & jquery: the missing manual

Adding Tooltips

12. Add lines 13-17 below to the mouseover function:

1 $('.trigger').mouseover(function() {
2 var ttLeft,
3 ttRight,
4 $this=$(this),
5 $tip = $($this.attr('data-tooltip')),
6 triggerPos = $this.offset(),
7 triggerH = $this.outerHeight(),
8 triggerW = $this.outerWidth(),
9 tipW = $tip.outerWidth(),

10 tipH = $tip.outerHeight(),
11 screenW = $(window).width(),
12 scrollTop = $(document).scrollTop();
13 if (triggerPos.top - tipH - scrollTop > 0) {
14 ttTop = triggerPos.top - tipH - 10;
15 } else {
16 ttTop = triggerPos.top + triggerH +10 ;
17 }
18 }); // end mouseover

There’s a lot going on here, but it helps to start by taking a look at where you
want to position the top of the tooltip in relation to the trigger. Normally, you’d
place a tooltip about 10 pixels above the trigger, so it doesn’t cover the trigger.
To determine the top position, you start by getting the top position of the trig-
ger, then subtracting the height of the tooltip, and then subtracting another 10
pixels. For example, say the trigger is 150 pixels from the top of the document
and the tooltip is 100 pixels tall. To place the tooltip so that it doesn’t cover the
trigger, take the trigger’s 150 top position, subtract 100 to get 50 pixels, and then
subtract another 10 (just to give a little breathing room from above the trigger).
As a result, the tooltip is placed 40 pixels from the top of the document.
What happens if the trigger is 10 pixels from the top of the document and the
tooltip is 100 pixels tall? If you simply followed the above equation, you’d end
up with 10-100, or a top position of -90 pixels: in other words, off the top of the
document and out of view!
Here’s where the condition in line 13 comes in: You take the trigger’s top posi-
tion, subtract the height of the tooltip, and also subtract the amount the visitor
has scrolled down the page. You then test to make sure that value is greater
than 0 (if it’s less than zero, the tooltip is placed outside the top of the browser
window). You need to account for the scrolling as well, since it’s possible that a
tooltip will fit above a trigger without being placed outside the top of the docu-
ment, but, if the page is scrolled, it could still be placed above the viewport of
the browser window (that’s the situation pictured in Figure 10-11).
If the condition is true, then the tooltip’s top position—ttTop—is set above the
trigger (line 14). However, if the condition is false, line 16 runs, which sets
the top position to 10 pixels below the bottom of the trigger (you calculate the
bottom of the trigger by finding its top positon—triggerPos.right—and add its
height—triggerH).
We next need to calculate the left position of the tooltip.

335chapter 10: expanding your interface

Adding Tooltips

Note: The example in this section places the tooltip above the trigger, but you don’t have to do it that
way. Feel free to play around with the programming to see if you can make the tooltip appear below or to
the left or right of the trigger.

Figure 10-11:
You need to be careful when
dynamically positioning an ele-
ment on a page. You never know
what size a visitor’s browser
window might be, nor whether
he has scrolled the page. If you
don’t take these things into
consideration, it’s easy to acci-
dentally place an element partly
or completely off the screen (the
hatched areas of the diagram).

Document

Browser
window

TooltipTrigger

A
B

C

13. Add line 18 below to the mouseover function:

1 $('.trigger').mouseover(function() {
2 var ttLeft,
3 ttRight,
4 $this=$(this),
5 $tip = $($this.attr('data-tooltip')),
6 triggerPos = $this.offset(),
7 triggerH = $this.outerHeight(),
8 triggerW = $this.outerWidth(),
9 tipW = $tip.outerWidth(),

10 tipH = $tip.outerHeight(),
11 screenW = $(window).width(),
12 scrollTop = $(document).scrollTop();
13 if (triggerPos.top - tipH - scrollTop > 0) {
14 ttTop = triggerPos.top - tipH - 10;
15 } else {
16 ttTop = triggerPos.top + triggerH +10 ;
17 }
18 var overFlowRight = (triggerPos.left + tipW) - screenW;
19 }); // end mouseover

336 javascript & jquery: the missing manual

Adding Tooltips

Calculating the left position is a bit trickier than the right position. You need to
know not only whether part of a tooltip is positioned off the right edge of the
browser window, but by how much. For example, say a trigger’s left position is
850 pixels (marked as A in Figure 10-11), the tooltip is 250 pixels wide (B), and
the browser window is 1,000 pixels wide (C). If you position the left edge of
the tooltip at 850 pixels, it will span from the 850 pixel mark to the 1,100 mark
(A+B). That means the right 100 pixels of the tooltip won’t be visible! To fix that,
you need to know how much of the tooltip extends outside of the right edge of
the browser, and adjust the tip’s left position by moving it that same amount to
the left.
Line 18 above calculates the total amount (if any) that the tooltip extends of the
right edge of the browser window. To do that, first calculate the far-left edge of
the tooltip if it were positioned at the left edge of the trigger—triggerPos.left +
tipW (A+B in Figure 10-11). Then subtract the screen width (C). If the result
is a positive value, some part of the tooltip will be outside the browser window.
If the result is negative, there’s plenty of screen space, and the tooltip will fit
just fine.

14. Add the following code below the line you added in the last step (line 18
above).
if (overFlowRight > 0) {
 ttLeft = triggerPos.left - overFlowRight - 10;
} else {
 ttLeft = triggerPos.left;
}

Basically this code says that if the overFlowRight variable holds a number greater
than zero (that means the tooltip won’t fit), then set the left edge of the tooltip—
ttLeft—to the trigger’s left position, minus the amount the tooltip would ex-
tend off the window. Subtracting an additional 10 pixels keeps the tooltip from
touching the edge of the window. If the value of overFlowRight is less then zero,
the tooltip will fit so just set its left position to match the trigger’s left position—
ttLeft = triggerPos.left;.
Wow, that’s a lot of math! Fortunately, you’re done. The top and left position for
the tooltip is calculated so now you can make it appear onscreen. Finally!

15. Add lines 24-28 below to finish up the mouseover function:

1 $('.trigger').mouseover(function() {
2 var ttLeft,
3 ttRight,
4 $this=$(this),
5 $tip = $($this.attr('data-tooltip')),
6 triggerPos = $this.offset(),
7 triggerH = $this.outerHeight(),
8 triggerW = $this.outerWidth(),
9 tipW = $tip.outerWidth(),

10 tipH = $tip.outerHeight(),
11 screenW = $(window).width(),
12 scrollTop = $(document).scrollTop();

337chapter 10: expanding your interface

Adding Tooltips

13 if (triggerPos.top - tipH - scrollTop > 0) {
14 ttTop = triggerPos.top - tipH - 10;
15 } else {
16 ttTop = triggerPos.top + triggerH +10 ;
17 }
18 var overFlowRight = (triggerPos.left + tipW) - screenW;
19 if (overFlowRight > 0) {
20 ttLeft = triggerPos.left - overFlowRight - 10;
21 } else {
22 ttLeft = triggerPos.left;
23 }
24 $tip.css({
25 left : ttLeft ,
26 top : ttTop,
27 position: 'absolute'
28 }).fadeIn(200);
29 }); // end mouseover

Now the moment of truth. Using jQuery’s chaining feature (page 137), first the
.css() function (page 143) is applied to the tooltip, with its left position and right
position set. Because you’re positioning the tooltip, its position property is also
set to absolute; then, the fadeIn() function (page 187) quickly fades the tooltip
into view. Fortunately, making the tooltip disappear when you mouse off the
trigger is a lot simpler.

16. Finish the programming by adding lines 30-32 below, so that the finished
code looks like this:

1 $('.trigger').mouseover(function() {
2 var ttLeft,
3 ttRight,
4 $this=$(this),
5 $tip = $($this.attr('data-tooltip')),
6 triggerPos = $this.offset(),
7 triggerH = $this.outerHeight(),
8 triggerW = $this.outerWidth(),
9 tipW = $tip.outerWidth(),

10 tipH = $tip.outerHeight(),
11 screenW = $(window).width(),
12 scrollTop = $(document).scrollTop();
13 if (triggerPos.top - tipH - scrollTop > 0) {
14 ttTop = triggerPos.top - tipH - 10;
15 } else {
16 ttTop = triggerPos.top + triggerH +10 ;
17 }
18 var overFlowRight = (triggerPos.left + tipW) - screenW;
19 if (overFlowRight > 0) {
20 ttLeft = triggerPos.left - overFlowRight - 10;
21 } else {
22 ttLeft = triggerPos.left;
23 }
24 $tip.css({
25 left : ttLeft ,
26 top : ttTop,
27 position: 'absolute'

338 javascript & jquery: the missing manual

Adding Tooltips

28 }).fadeIn(200);
29 }); // end mouseover
30 $('.trigger').mouseout(function () {
31 $('.tooltip').fadeOut(200);
32 }); // end mouseout

The mouseout stuff is easy: Just fade out any visible tooltips when you mouse off
the trigger. And that’s it. Save the file and test it out in a web browser. A complet-
ed version of the file—complete_tooltip.html—is in the chapter10 tutorial folder.

PLUg-IN ALERT

Tooltips, the Easier Way
Learning to program your own tooltips is a great way to
master jQuery’s functions for working with the dimensions
and positions of elements. But if you’re looking for addi-
tional features like cooler-looking tooltip boxes, speech-
bubble effects, the ability to download tooltip content using
Ajax, or precise positioning of the tooltip, there are plenty
of jQuery plug-ins that offer more features than the simple
script we created in this chapter:

• qTip2 (http://craigsworks.com/projects/qtip2/) is a
powerhouse tooltip plug-in. Not only can it create
simple tooltips like in our tutorial, but it can also
create speech bubbles, follow a mouse as it moves
around the screen, download content from the server
to display in the tooltip, and a lot more. You can even
use it to create dialog boxes, drop-down menus, and
more. It’s like the Swiss army knife of tooltips.

• jQuery Tools Tooltip (http://flowplayer.org/tools/
tooltip/index.html) is another great tooltip plug-in.
The tooltips it creates are very slick looking and highly

customizable. While you’re looking at this plug-in,
check out the entire jQuery Tools collection (http://
flowplayer.org/tools/). It bills itself as “The Missing
UI Library for the Web,” and despite this grandiose
claim, it comes pretty close to answering the needs of
many web designers. jQuery tools includes plug-ins
for tabs, overlays, forms, a slider (like the Anything-
Slider discussed on page 312), and more.

• The jQuery UI Tooltip (http://wiki.jqueryui.com/w/
page/12138112/Tooltip). You read about jQuery
UI in the box on page 312: It’s a large collection of
user interface widgets and tools for web designers.
Although (at the time of this writing) the jQuery UI
team hasn’t officially released a tooltip plug-in, a sub-
stantial amount of work on it is already completed
and it’s scheduled to come out with version 1.9 of the
jQuery UI library. All of the plug-ins that come with
jQuery UI are top-notch.

4
Part Four: Ajax:
Communication with
the Web Server
Chapter	11:	Introducing	Ajax

Chapter	12:	Flickr	and	Google	Maps

341

chapter
11

Introducing Ajax

JavaScript is great, but it can’t do everything. If you want to display information
from a database, dash off an email with results from a form, or just download
additional HTML, you need to communicate with a web server. For these tasks,

you usually need to load a new web page. For example, when you search a database
for information, you usually leave the search page and go to another page of results.

Of course, waiting for new pages to load takes time. And, if you think about it, the
concept of a page disappearing and then reappearing is pretty strange in general.
Imagine if you were using Microsoft Word and every time you opened a new file the
program’s menus, panels, and windows suddenly disappeared and then reappeared
when the new file opened. Sites like Facebook, Twitter, Google Maps, and Gmail are
blurring the line between websites and desktop computer programs. If anything,
people want websites to feel faster and more responsive, like their desktop programs.
The technology that makes this new generation of web applications possible is a
programming technology called Ajax.

Ajax lets a web page ask for and receive a response from a web server and then up-
date itself without ever having to load a new web page. The result is a website that
feels more responsive. When you visit Google Maps, for example (see Figure 11-1),
you can zoom into the map; move north, south, east, or west, and even grab the map
and drag it around. All of these actions happen without ever loading a new web page.

342 javascript & jquery: the missing manual

What Is Ajax?

Figure 11-1:
Google Maps (http://
maps.google.com)
was one of the first
large sites to use Ajax
to refresh page con-
tent without loading
new web pages. The
site’s responsiveness
is due to the fact that
only the map data
changes—the other
parts of the page,
like the logo, search
box, search results
sidebar, and map
controls, remain the
same even as you
request new map
information.

What Is Ajax?
The term Ajax was originally coined in 2005 to capture the essence of new web-
sites coming from Google—Google Maps (http://maps.google.com), Gmail (www
.gmail.com), and Google Suggest (www.google.com/webhp?complete=1&hl=en). Ajax
stands for Asynchronous JavaScript and XML, but it isn’t an “official” technology like
HTML, JavaScript, or CSS. It’s a term that refers to the interaction of a mix of tech-
nologies—JavaScript, the web browser, and the web server—to retrieve and display
new content without loading a new web page.

Note: If you want to read the original blog post where the term Ajax was first used, visit www.adaptivepath
.com/ideas/ajax-new-approach-web-applications.

In a nutshell, current web browsers let you use JavaScript to send a request to a web
server, which, in turn, sends some data back to the web browser. The JavaScript
program takes that data, and does something with it. For example, if you’re on a
Google Maps page and click the “north” arrow button, the page’s JavaScript requests
new map data from the Google server. That new information is then used to display
a new chunk of the map.

While you may not create the next Google Maps, there are many simple things that
you can do with Ajax technologies:

http://maps.google.com
http://maps.google.com
www.adaptivepath.com/ideas/ajax-new-approach-web-applications
www.adaptivepath.com/ideas/ajax-new-approach-web-applications

343chapter 11: introducing ajax

Ajax: The Basics

• Display new HTML content without reloading the page. For example, on a
page that lists news headlines and displays the article when a visitor clicks a
headline, you can save him the tiresome wait for a new page to load. Instead,
the news story could appear right on the same web page, without the banner,
sidebar, footer, or other page content needing to reload. You’ll learn how on
page 352.

• Submit a form and instantly display results. For example, imagine a “sign up
for our newsletter” form; when someone fills out and submits the form, the
form disappears and a “you’re signed up for our newsletter” message imme-
diately appears. You’ll learn how to make such forms using Ajax on page 356.

• Log in without leaving the page. Here’s another form-related use of JavaScript—
a page with a small “login” form. Fill out the form, hit the “login” button, and
you’re not only logged in, the page transforms to show your login status, user
name, and perhaps other information specific to you.

• Star-rating widget. On sites that list books, movies, and other products, you
often see a star rating—usually 1 to 5 stars—to indicate how visitors have rated
the item’s quality. These rating systems usually let you voice your opinion by
clicking a number of stars. Using Ajax, you can let your visitors cast votes with-
out actually leaving the web page—all they have to do is click the stars. There’s a
cool jQuery plug-in that does just that: www.wbotelhos.com/raty/.

• Browsing through database information. Amazon is a typical example of an
online database you can browse. When you search Amazon for books on, say,
JavaScript, you get a list of the JavaScript books Amazon sells. Usually, there are
more books than can fit on a single web page, so you need to jump from page
to page to see “the next 10 items.” Using Ajax, you can move through database
records without having to jump to another page. Here’s how Twitter uses Ajax:
When you view your Twitter page, you see a bunch of tweets from the people
you follow. If you scroll to the bottom of the page, Twitter loads more tweets.
Scroll again and more tweets appear. It’s like a never-ending web page!

There’s nothing revolutionary about any of the tasks listed above—except for the
“without loading a new page” part, you can achieve the same basic results using
regular HTML and some server-side programming (to collect form data, or access
database information, for example). However, Ajax makes web pages feel more re-
sponsive, and improves the user experience of a site. In fact, Ajax lets you create
websites that feel more like desktop programs and less like web pages.

Ajax: The Basics
Taken together, the technologies behind Ajax are pretty complicated. They include
JavaScript, server-side programming, and the web browser all working together.
However, the basic concept is easy to grasp, as long as you understand all of the
steps involved. Figure 11-2 shows the difference between how traditional HTML
web pages and web pages with Ajax communicate with the web server.

344 javascript & jquery: the missing manual

Ajax: The Basics

Figure 11-2:
The traditional way a web browser communicates
with a server (top) involves requesting a file from
the server and receiving a web page back. It’s a
constant loading and reloading of web pages. With
Ajax, the web browser requests only new informa-
tion. The server returns the requested data, and the
web page’s content and appearance are updated
(with JavaScript’s help).

Web browser

Traditional Request Model

Web server

Web browser

Ajax Request Model

Web server

Web
page

Web
page

Web
page

Request

Request

Response

Response

Web
page

Request

Request
Request

Response

Response

Response

Pieces	of	the	Puzzle
Ajax isn’t a single technology—it’s a mixture of several different technologies that
work together to make a more effective user experience. In essence, Ajax brings
together three different components:

• The web browser. Obviously, you need a web browser to view web pages and
run JavaScript, but there’s a secret ingredient built into most web browsers that
makes Ajax possible: the XMLHttpRequest object. This odd-sounding term is
what lets JavaScript talk to a web server and receive information in response.

345chapter 11: introducing ajax

Ajax: The Basics

The XMLHttpRequest object was actually introduced in Internet Explorer 5
many years ago, but has gradually made its way into all the major web browsers.
You’ll learn more about it on page 346.

• JavaScript does most of the heavy lifting in Ajax. It sends a request to the web
server, waits for a response, processes the response, and (usually) updates the
page by adding new content or changing the display of the page in some way.
Depending upon what you want your program to do, you might have JavaScript
send information from a form, request additional database records, or simply
send a single piece of data (like the rating a visitor just gave to a book). After
the data is sent to the server, the JavaScript program will be ready for a response
back from the server—for example, additional database records or just a simple
text message like “Your vote has been counted.”
With that information, JavaScript will update the web page—display new data-
base records, for example, or inform the visitor that he’s successfully logged in.
Updating a web page involves manipulating a page’s DOM (Document Object
Model, discussed on page 127) to add, change, and remove HTML tags and
content. In fact, that’s what you’ve been doing for most of this book: changing a
page’s content and appearance using JavaScript.

• The web server receives requests from and sends information back to the web
browser. The server might simply return some HTML or plain text, or it might
return an XML document (see the box on page 365) or JSON data (page 370).
For example, if the web server receives information from a form, it might add
that information into a database and send back a confirmation message like
“record added.” Or, the JavaScript program might send a request for the next 10
records of a database search, and the web server will send back the information
for those next 10 records.
The web server part of the equation can get a bit tricky. It usually involves sev-
eral different types of technologies, including a web server, application server,
and database server. A web server is really kind of a glorified filing cabinet: It
stores documents and when a web browser asks for a document, the web server
delivers it. To do more complicated tasks such as putting data from a form into a
database, you also need an application server and a database server. An applica-
tion server understands a server-side programming language like PHP, Java, C#,
Ruby, or Cold Fusion Markup language and lets you perform tasks that aren’t
possible with only an HTML page, like sending email, checking Amazon for
book prices, or storing information in a database. The database server lets you
store information like the names and addresses of customers, details of prod-
ucts you sell, or an archive of your favorite recipes. Common database servers
include MySQL, PostgreSQL, and SQL Server.

Note: The term server can refer either to a piece of hardware or software. In this book, the terms applica-
tion, web, and database server refer to different pieces of software that can (and often do) run on the
same machine.

346 javascript & jquery: the missing manual

Ajax: The Basics

There are many different combinations of web servers, application servers, and
database servers. For example, you might use Microsoft’s IIS web server, with
ASP.NET (application server) and SQL server (a database server). Or you can use
Apache (a web server), PHP (an application server), and MySQL (a database).

Note: The combination of Apache, PHP, and MySQL (often referred to simply as AMP) is free and very
common. You’ll find that most web hosting companies provide these servers. This book’s examples also
use AMP (see the box below).

UP TO SPEED

Setting Up a Web Server
Ajax works with a web server—after all, its main purpose
is to let JavaScript send and retrieve information from a
server. While all but one of the tutorials in this and the
following chapter will run on your local computer without
a web server, you’ll probably want to have access to a web
server if you want to further explore the world of Ajax. If
you’ve already got a website on the Internet, one choice is
to test your Ajax programs by moving your files to the web
server. Unfortunately, this technique is cumbersome—you
have to create the pages on your computer and then move
them to your web server using a FTP program just to see
if they work.

A better approach is to set up a development server, which
involves installing a web server on your desktop computer
so you can program and test your Ajax pages directly on
your own computer. This task may sound daunting, but
there are plenty of free programs that make installing all of
the necessary components as easy as double-clicking a file.

On the Windows side, you can install Apache, PHP, and
MySQL using WAMP (www.wampserver.com/en/). WAMP

is a free installer that sets up all of the required elements
needed to simulate a real website hosted on the Internet.
You can find a video demonstrating how to install WAMP at
http://uptospeedguides.com/wamp/.

For Mac fans, MAMP (www.mamp.info/en) provides
an easy-to-use program that includes Apache, PHP, and
MySQL. It’s also free. You can find a video demonstrat-
ing how to install WAMP at http://uptospeedguides.com/
mamp/.

The tutorial on page 365 requires AMP. So if you want to
follow along with that tutorial, you’ll need to install AMP
on your computer using one of the two programs above. If
you already have a website that uses a different web server
(for example, Microsoft’s IIS), you’ll probably want to install
it on your computer if you plan to create Ajax applications
that you’d like to use on your real website. There are many
resources for installing IIS. If you want to install IIS on
Vista, visit http://learn.iis.net/page.aspx/85/installing-iis7/.
XP Pro users can visit www.webwiz.co.uk/kb/asp-tutorials/
installing-iis-winxp-pro.htm.

Talking	to	the	Web	Server
The core of any Ajax program is the XMLHttpRequest object. Sometimes just re-
ferred to as XHR, the XMLHttpRequest object is a feature built into current web
browsers that allows JavaScript to send information to a web server and receive in-
formation in return. There are basically five steps, all of which can be accomplished
with JavaScript.

http://uptospeedguides.com/mamp/
http://uptospeedguides.com/mamp/
www.webwiz.co.uk/kb/asp-tutorials/installing-iis-winxp-pro.htm
www.webwiz.co.uk/kb/asp-tutorials/installing-iis-winxp-pro.htm

347chapter 11: introducing ajax

Ajax: The Basics

1. Create an instance of the XMLHttpRequest object.
This first step simply tells the web browser “Hey, I want to send some informa-
tion to the web server, so get ready.” In its most basic form, creating an XML-
HttpRequest object in JavaScript looks like this:
var newXHR = new XMLHttpRequest();

Unfortunately, there are enough cross-browser problems with Ajax that is bet-
ter to use a JavaScript library—like jQuery—to make your Ajax requests. You’ll
learn the jQuery way on page 349.

2. Use the XHR’s open() method to specify what kind of data you’ll send and
where the data will go.
You can send data in two ways, using either the GET or POST method—these
are the same options as used with HTML forms. The GET method sends any
information to the web server as part of the URL—shop.php?productID=34,
for example. In this example, the data is the information that follows the ?:
productID=34, which indicates a name/value pair, where productID is the name
and 34 is the value. Think of the name like the name of a field on a form and
value as what a visitor would type into that field.

Note: The URL you specify for the open() method must be on the same website as the page making the
request. For security, web browsers won’t let you make Ajax requests to other domains.

The POST method sends data separately from the URL. Usually, you use the
GET method to get data back from the server, and the POST method to update
information on the server (for example, to add, update, or delete a database
record). You’ll learn how to use both methods on page 356.
You also use the open() method to specify the page on the server the data is
sent to. That’s usually a page on your web server that uses a server-side script-
ing language like PHP to retrieve data from a database or perform some other
programming task, and you point to it by its URL. For example, the following
code tells the XHR object what method to use (GET) and which page on the
server to request:
newXHR.open('GET', 'shop.php?productID=34');

3. Create a function to handle the results.
When the web server returns a result like new database information, a confir-
mation that a form was processed, or just a simple text message, you usually
want to do something with that result. That could be as simple as writing the
message “form submitted successfully,” or replacing an entire table of database
records with a new table of records. In any case, you need to write a JavaScript
function to deal with the results—this function (called a callback function) is
often the meat of your program.

348 javascript & jquery: the missing manual

Ajax: The Basics

Usually, this function will manipulate the page’s content (that is, change the
page’s DOM) by removing elements (for example, removing a form that was just
submitted using Ajax), adding elements (a “form submitted successfully” mes-
sage, or a new HTML table of database records), or changing elements (for ex-
ample, highlighting the number of stars a visitor just clicked to rate a product).
There are a few other steps involved here, but you’ll be using jQuery to handle
the details, so the only thing you really need to understand about the callback
function is that it’s the JavaScript that deals with the server’s response.

4. Send the request.
To actually send information to the web server, you use the XHR object’s send()
method. Everything up to this point is just setup—this step is what tells the web
browser, “We’re good to go…send the request!” If you’re using the GET method,
this step is as simple as:
newXHR.send(null);

The null part indicates that you’re not sending any additional data. (Re-
member, with the GET method, the data is sent in the URL like this: search
.php?q=javascript, where the q=javascript is the data.) With the POST method,
on the other hand, you must provide the data along with the send() method
like this:
newXHR.send('q=javascript');

Again, don’t sweat the details here—you’ll see how jQuery greatly simplifies this
process starting in the next section.
Once the request is sent, your JavaScript program doesn’t necessarily stop. The
“A” in Ajax stands for asynchronous, which means that once the request is sent,
the JavaScript program can continue doing other things. The web browser
doesn’t just sit around and wait for the server to respond.

5. Receive the response.
After the server has processed the request, it sends back a response to the web
browser. Actually, the callback function you created in step 3 handles the re-
sponse, but meanwhile, the XHR object receives several pieces of information
when the web server responds, including the status of the request, a text response,
and possibly an XML response.
The status response is a number indicating how the server responded to the
request: You’re probably familiar with the status number 404—it means the file
wasn’t found. If everything went according to plan, you’ll get a status of 200 or
possibly 304. If there was an error processing the page, you’ll get a 500 “Internal
Server Error” status report, and if the file you requested is password protected,
you’ll get a 403 “Access Forbidden” error.

349chapter 11: introducing ajax

Ajax the jQuery Way

In addition, most of the time, you’ll receive a text response, which is stored
in the XHR object’s responseText property. This response could be a chunk of
HTML, a simple text message, or a complex set of JSON data (see page 370).
Finally, if the server responds with an XML file, it’s stored in the XHR object’s
responseXML property. Although XML is still used, it’s more common for pro-
gram server pages to return text, HTML, or JSON data, so you may never have
a need to process an XML response.
Whatever data the server returns, it’s available to the callback function to use
to update the web page. Once the callback function finishes up, the entire Ajax
cycle is over. (However, you may have multiple Ajax requests shooting off at the
same time.)

Ajax the jQuery Way
There are enough differences between browsers that you have to write extra code for
your Ajax programs to work in Internet Explorer, Firefox, Safari, and Opera. And
although the basic XMLHttpRequest process isn’t too complicated, since you must
take so many steps each time you make an XHR request, your Ajax programming
will go faster if you turn to a JavaScript library.

The jQuery library provides several functions that greatly simplify the entire pro-
cess. After all, if you look at the five steps in an Ajax request (page 347), you’ll see
that the interesting stuff—the programming that actually does something with the
server’s response—happens in just a single step (step 3). jQuery simplifies all of the
other steps so you can concentrate on the really fun programming.

Using	the	load()	Function
The simplest Ajax function offered by jQuery is load(). This function loads an
HTML file into a specified element on the page. For example, say you have an area
of a web page dedicated to a short list of news headlines. When the page loads, the
five most recent news stories appear. You may want to add a few links that let visitors
choose what type of news stories are displayed in this area of the page: for example,
yesterday’s news, local news, sports news, and so on. You can do this by linking to
separate web pages, each of which contain the proper news items—but that would
force your visitors to move onto another web page (and wouldn’t use Ajax at all!).

Another approach would be to simply load the selected news stories into the news
headlines box on the page. In other words, each time a visitor clicks a different news
category, the web browser requests a new HTML file from the server, and then
places that HTML into the headlines box—without leaving the current page (see
Figure 11-3).

350 javascript & jquery: the missing manual

Ajax the jQuery Way

Figure 11-3:
The top set of images shows how links
work—the typical method of accessing
additional HTML. Click a link on a page
(top left) and it loads a brand new page
(top right). However, using Ajax and
jQuery’s load() function, you can access
the same HTML without leaving the cur-
rent web page (bottom). Clicking a link
loads the HTML content into a <div> tag
(outlined).

351chapter 11: introducing ajax

Ajax the jQuery Way

UP TO SPEED

Learning the Ways of the Server Side
Unless you’re using jQuery’s basic load() function (dis-
cussed previously) to insert HTML from a page on the serv-
er into the page in the web browser, you’ll need to have
server-side programming to use Ajax. The main point of
Ajax is to let JavaScript talk to and get information from the
server. Most of the time, that means there’s another script
running on the web server that completes tasks JavaScript
can’t do, like reading information from a database, sending
off an email, or logging a user in.

This book doesn’t cover the server side, so you’ll need
to learn how to program using a server-side technology
like PHP, .NET, JSP, ASP, or Cold Fusion (or you’ll need
someone who can program the server-side bit for you).
If you haven’t picked a server-side language yet, PHP is a
good place to start: It’s one of the most popular web server
programming languages, it’s free, and nearly every web

hosting company offers PHP on its servers. It’s a powerful
language that’s built for the web, and it’s relatively easy to
learn. If you want to get started learning server-side pro-
gramming with PHP, you should check out Learning PHP,
MySQL, and JavaScript (O’Reilly), Head First PHP & MySQL
(O’Reilly), or PHP Solutions: Dynamic Web Design Made
Easy (Friends of Ed). Any of these books is a good place
to start.

There are also plenty of free online resources for learn-
ing PHP. PHP 101 (http://devzone.zend.com/node/view/
id/627) from Zend (one of the main companies that sup-
ports the development of PHP) has plenty of basic (and
advanced) information. The W3Schools website also has
a lot of information for the beginning PHP programmer at
www.w3schools.com/PHP.

To use the load() function, you first use a jQuery selector to identify the element on
the page where the requested HTML should go; you then call the load() function and
pass the URL of the page you wish to retrieve. For example, say you have a <div>
tag with the ID headlines and you want to load the HTML from the file todays_news
.html into that div. You can do that like this:

$('#headlines').load('todays_news.html');

When this code runs, the web browser requests the file todays_news.html from the
web server. When that file is downloaded, the browser replaces whatever is currently
inside the <div> with the ID headlines with the contents of the new file. The HTML
file can be a complete web page (including the <html>, <head>, and <body> tags),
or just a snippet of HTML—for example, the requested file might just have a single
<h1> tag and a paragraph of text. It’s OK if the file isn’t a complete web page, since
the load() function inserts only that HTML snippet into the current (complete) page.

Note: You can only load HTML files from the same site. For example, you can’t load Google’s home page
into a <div> on a page from your site using the load() function. (You can display a page from another
website using an iframe—this is the technique used by the FancyBox plug-in presented on page 245.)

352 javascript & jquery: the missing manual

Ajax the jQuery Way

When using the load() function, you must be very careful with file paths. First, the
URL you pass to the load() function is in relation to the current page. In other words,
you use the same path as if you were linking from the current page to the HTML file
you wish to load. In addition, any file paths in the HTML don’t get rewritten when
the HTML is loaded into the document, so if you have a link or include images in the
HTML file that’s loaded, those URLs need to work in relation to the page using the
load() function. In other words, if you’re using document-relative paths (see the box
on page 28) and the loaded HTML file is located in another folder on your website,
images and links might not work when the HTML is loaded into the current page.
Here’s a simple workaround: Just use root-relative links, or make sure the file you
load is located in the same directory as the page that’s using the load() function.

The load() function even lets you specify which part of the downloaded HTML file
you wish to add to the page. For example, say the page you request is a regular web
page from the site; it includes all of the normal web page elements such as a banner,
navigation bar, and footer. You may just be interested in the content from a single
area of that page—for example, just a particular <div> and its contents. To specify
which part of the page you wish to load, insert a space after the URL, followed by a
jQuery selector. For example, say in the above example you want to insert the con-
tent only inside a <div> with the ID news in the todays_news.html file. You could do
that with this code:

$('#headlines').load('todays_news.html #news');

In this case, the web browser downloads the page todays_news.html, but instead of
inserting the entire contents of the file into the headlines <div>, it extracts just the
<div> tag (and everything inside it) with an ID of news. You’ll see this technique in
the following tutorial.

Tutorial:	The	load()	Function
In this tutorial, you’ll use jQuery to replace the traditional click-and-load method
of accessing HTML (Figure 11-3, top) with a more responsive method that simply
replaces content on the current page with new HTML (Figure 11-3, bottom).

Overview
To get a handle on what you’ll be doing in this tutorial, you first need to understand
the HTML of the page you’re about to “Ajaxify.” Take a look at Figure 11-4: The page
has a bulleted list of links, each of which points to a different page containing differ-
ent news headlines. The tag used to create the list has the ID newslinks. In ad-
dition, there’s an empty <div> tag in the right sidebar (below the “News Headlines”
header). That div has an ID of headlines and is, at this point, an empty placeholder.
Eventually, once you use jQuery’s load() function, clicking one of the links will load
news stories into the <div>.

Currently, clicking a link just opens a web page with a series of news items. In other
words, this page works the regular HTML way—it has links that point to other pages.
In fact, without the nifty JavaScript you’re about to add, the page works perfectly

353chapter 11: introducing ajax

Ajax the jQuery Way

fine—it’ll get any visitors to the news they’re after. That’s a good thing, because not
everyone has JavaScript enabled in their browsers. In addition, if the only way to
get to those news items is through JavaScript, search engines would skip over that
valuable content.

Figure 11-4:
When you want to use JavaScript
to add content to a page, it’s com-
mon to insert an empty <div> tag
with an ID. You can then select
that <div> and insert content
when you want. For example,
this page has an empty div (<div
id=“headlines”>) in the right side-
bar. With a little Ajax power, it’s a
simple matter to fill that div with
the contents of any of the three
linked pages listed in the middle
of the page.

<div id=’headlines’><ul id=’newslinks’>

Note: You can use the load() function directly from your hard drive without a web server, so you don’t
need to set up a server on your computer (see the box on page 346) to follow along.

This tutorial provides an example of progressive enhancement—it functions just fine
without JavaScript, but works even better with JavaScript. In other words, everyone
can access the content, and no one’s left out. To implement progressive enhance-
ment, you’ll add JavaScript to “hijack” the normal link function, then get the URL of
the link, and then download the link to the page and put its contents into the empty
<div>. It’s as simple as that.

Note: See the note on page 29 for information on how to download the tutorial files.

The programming
1. In a text editor, open the file load.html in the chapter11 folder.

You’ll start by assigning a click event function to each of the links in the bulleted
list in the main part of the page. The bulleted list (the tag) has an ID of

354 javascript & jquery: the missing manual

Ajax the jQuery Way

newslinks, so you can easily use jQuery to select each of those links and assign
a click() function to them.

2. Click in the empty line inside the $(document).ready() function, and type:
$('#newslinks a').click(function() {

});

The $(‘#newslinks a’) is the jQuery way to select each of those links, and the
.click() function lets you assign a function (an event handler) to the click event
(see page 162) if you need a refresher on events).
The next step is to extract the URL from each link.

3. Inside the click() function (the blank line in step 2 above), type var url=$(this).
attr(‘href ’); and press Return to create an empty line.
This line of code creates a new variable (url) and assigns it the value of the link’s
href attribute. As you’ll recall from page 136, when you attach a function (like
the click() function) to a jQuery selection ($(‘#newslinks a’) in this case), jQuery
loops through each element in the selection (each link) and applies the function
to each one. The $(this) is just a way to get hold of the current element being
worked on. In other words, $(this) will refer to a different link as jQuery loops
through the collection of elements. The attr() function (discussed on page 146)
can retrieve or set a particular element for a tag; in this case, the function ex-
tracts the href property to get the URL of the page the link points to. In the next
step, you’ll use that URL along with the load() function to retrieve the page’s
content and display it inside a <div> on the page.

4. Type $(‘#headlines’).load(url); so the script looks like this:
$('#newslinks a').click(function() {
 var url=$(this).attr('href');
 $('#headlines').load(url);
});

Remember that the empty <div> tag on the page—where the downloaded
HTML will go—has an ID of headlines, so $(‘#headlines’) selects that <div>. The
load() function then downloads the HTML at the URL that the previous line of
code retrieved, and then puts that HTML in the <div> tag. Yes, there’s actually
lots of other stuff going on under the hood to make all that happen, but thanks
to jQuery, you don’t have to worry about it.
The page isn’t quite done yet. If you save the file and preview it in a web browser—
go ahead, try it—you’ll notice that clicking one of the links doesn’t load new
content onto the page—it actually leaves the current page and loads the linked
page instead! What happened to the Ajax? It’s still there, it’s just that the web
browser is following its normal behavior of loading a new web page when a link
is clicked. To stop that, you have to prevent the browser from following the link.

5. Add a new empty line after the code you typed in the previous step and type
return false; so the script now looks like this:

355chapter 11: introducing ajax

Ajax the jQuery Way

$('#newslinks a').click(function() {
 var url=$(this).attr('href');
 $('#headlines').load(url);
 return false;
});

This simple step tells the web browser, “Hey, web browser, don’t follow that
link.” It’s one way of preventing a browser from following its normal behavior
in response to an event. You can also use jQuery’s preventDefault() function as
described on page 175 to achieve the same effect.

6. Save the file and preview it in a web browser. Click one of the links.
Now there’s another problem, as you can see in Figure 11-5. The load() func-
tion is working, it’s just that the downloaded file has a lot of HTML you don’t
want—in particular, the banner “JavaScript & jQuery” appears a second time.
What you really want is only a portion of that web page—the area containing
the news items. Fortunately, the load() function can help here as well.

Figure 11-5:
jQuery’s load() function will
download all of the HTML for
a specified file and place it into
an element on the current page.
If the downloaded file includes
unneeded HTML, like a duplicate
banner, and footer, the result can
look like a page within a page.

7. Locate the line with the load() function and add + ‘ #newsItem’ after url. The
finished code should look like this:

356 javascript & jquery: the missing manual

Ajax the jQuery Way

$('#newslinks a').click(function() {
 var url=$(this).attr('href');
 $('#headlines').load(url + ' #newsItem');
 return false;
});

As described on page 352, you can specify which part of a downloaded file you
want the load() function to add to the page. To do that, you add a space after
the URL, followed by a selector that identifies the part of the downloaded page
you wish to display.
Here’s how the code breaks down into bit-sized chunks: First, on each of the
linked pages, there’s a <div> tag with the ID newsItem. That div contains the
HTML you want—the news items. So you can tell the load() function to only
insert that part of the downloaded HTML by adding a space followed by #news-
Item to the URL passed to load(). For example, if you want to load the file today
.html and place just the HTML inside the newsItem div inside the headlines div,
you can use this code:
$('#headlines').load('today.html #newsItem');

In this case, you need to combine two strings—the contents of the url variable
and ‘ #newsItems’ to get the proper code—so you use JavaScript’s string concat-
enation operator (the + symbol) like this: load(url + ‘ #newsItems’). (See page 51
if you need a refresher on how to combine two strings.)

8. Save the file and preview it in a web browser. Click the links to test it out.
Now the news items—and only the news items—from each linked page should
appear in the box in the middle of the page. Ajax in just a few lines of code!
(You’ll find a completed version of the tutorial—complete_load.html—in the
chapter12 file for reference.)

The	get()	and	post()	Functions
The load() function described on page 349 is a quick way to get HTML from a
web server and inject it into a page. But the server may not always return straight
HTML—it may return a message, a code number, or data that you then need to
process further using JavaScript. For example, if you want to use Ajax to get some
database records, the server may return an XML file containing those records (see
the box on page 365) or a JSON object (page 370). You wouldn’t just insert that data
into the page—you first have to get the data and process it in some way to generate
the HTML you want.

jQuery’s get() and post() functions provide simple tools to send data to and retrieve
data from a web server. As mentioned in step 2 on page 347, you need to treat the
XMLHttpRequest object slightly differently when using either the GET or POST
method. However, jQuery takes care of any differences between the two methods so
the get() and post() functions work identically. (So which should you use? Read the
box on page 358.)

The basic structure of these functions is:

357chapter 11: introducing ajax

Ajax the jQuery Way

$.get(url, data, callback);

Or:
$.post(url, data, callback);

Unlike most other jQuery functions, you don’t add get() or post() to a jQuery
selector—in other words, you’d never do something like this: $(‘#mainContent’)
.get(‘products.php’). The two functions stand by themselves and aren’t connected
with any element on the page, so you just use the $ symbol, followed by a period,
followed by either get or post: $.get().

The get() and post() functions accept three arguments: url is a string that contains
the path to the server-side script that processes the data (for example, ‘processForm.
php’). The data argument is either a string or a JavaScript object literal containing
the data you want to send to the server (you’ll learn how to create this in the next
section). Finally, callback is the function that processes the information returned
from the server (see the box on page 196 for details on writing a callback function).

When either the get() or post() function runs, the web browser sends off the data
to the specified URL. When the server sends data back to the browser, the browser
hands that data to the callback function, which then processes that information and
usually updates the web page in some way. You’ll see an example of this in action on
page 365.

Formatting	Data	to	Send	to	the	Server
Most of the time when writing a JavaScript program that uses Ajax, you’ll be sending
some information to the server. For example, if you want to get information about
a particular product stored in a database, you could send a single number repre-
senting a product. When the web server gets the number from the XHR request, it
looks for a product in the database that matches that number, retrieves the product
information, and sends it back to the web browser. Or, you might use Ajax to submit
an entire form’s worth of information as part of an online order or a “sign up for our
email newsletter” form.

In either case, you need to format the data for your request in a way that the get() and
post() functions understand. The second argument sent to either function contains
the data you wish to send the server—you can format this data either as a query
string or as a JavaScript object literal, as described in the next two sections.

Query string
You’ve probably seen query strings before: They frequently appear at the end of a
URL following a ? symbol. For example, in this URL http://www.chia-vet.com/prod-
ucts.php?prodID=18&sessID=1234, the query string is prodID=18&sessID=1234.
This query string contains two name/value pairs, prodID=18 and sessID=1234. This
string does basically the same as creating two variables, prodID and sessID, and stor-
ing two values into them. A query string is a common method for passing informa-
tion in a URL.

358 javascript & jquery: the missing manual

Ajax the jQuery Way

FREQUENTLY ASKED QUESTION

GET or POST?
The two methods for submitting data to a web server, GET
and POST, seem pretty much the same. Which should I
use?

The answer really depends. In some cases, you don’t have
a choice. For example, suppose you’re sending informa-
tion to a server-side script that’s already up and running on
your server. In other words, the server-side programming
is already done, and you just need to use JavaScript to talk
to it. In that case, you use the method that the script is
expecting. Most likely, the programmer set up the script to
accept either GET or POST data. So you can either talk to
the programmer or look at the script to see which method
it uses, then use the jQuery function that matches—either
get() or post().

If you (or another programmer) hasn’t yet written the serv-
er-side script that your JavaScript program will talk to, then
you get to choose the method. The GET method is suited
to requests that don’t affect the state of a database or files

on the server. In other words, use it when you want to get
information, like requesting the price of a particular prod-
uct or obtaining a list of most popular products. The POST
method is for sending data that will change information on
the server, like a request to delete a file, update a database,
or insert new information into a database.

In reality, you can use either method, and often program-
mers will use a GET method to delete database informa-
tion, and the POST method just to retrieve information
from the server. However, there is one situation where
POST is required. If you’re submitting a lot of form data to
a server—for example, a blog post that might include hun-
dreds of words—use POST. The GET method has a built-in
limit on the amount of data it can send (this limit varies
from browser to browser but it’s usually around several
thousand characters). Most of the time, web designers use
POST for forms that include more than just a few fields.

You can also format data sent to the server using Ajax in this format. For example,
say you’ve created a web page that lets visitors rate movies by clicking a number of
stars. Clicking five stars, for instance, submits a rating of five to the server. In this
case, the data sent to the server might look like this: rating=5. Assuming the name of
the page processing these ratings is called rateMovie.php, the code to send the rating
to the server using Ajax would look like this:

$.get('rateMovie.php','rating=5');

Or, if you’re using the POST method:
$.post('rateMovie.php','rating=5');

Note: jQuery’s get() and post() functions don’t require you to define data or a callback function. You
only need to supply the URL of the server-side page. However, you’ll almost always provide data as well.
For example, in this code $.get(‘rankMovie.php’,‘rating=5’); only the URL and the data are supplied—no
callback function is specified. In this case, the visitor is merely submitting a ranking, and there’s no need
for the server to respond or for a callback function to do anything.

If you need to send more than one name/value pair to the server, insert an & be-
tween each pair:

$.post('rateMovie.php','rating=5&user=Bob');

359chapter 11: introducing ajax

Ajax the jQuery Way

You need to be careful using this method, however, since some characters have spe-
cial meaning when you insert into a query string. For instance, you use the & symbol
to include additional name/value pairs to the string; the = symbol assigns a value to
a name. For example, the following query string isn’t valid:

'favFood=Mac & Cheese' // incorrect

The & symbol here is supposed to be part of “Mac & Cheese,” but when used as part
of a query string, the & will be interpreted to mean a second name/value pair. If you
want to use special characters as part of the name or value in a name/value pair, you
need to escape or encode them so that they won’t be mistaken for a character with
special meaning. For example, the space character is represented by %20, the & sym-
bol by %26, and the = sign by %3D. So you need to write out the “Mac & Cheese”
example like this:

'favFood=Mac%20%26%20Cheese' // properly escaped

JavaScript provides a method for properly escaping strings—the encodeURICompo-
nent() method. You supply the endcodeURIComponent() method with a string, and
it returns a properly escaped string. For example:

var queryString = 'favFood=' + encodeURIComponent('Mac & Cheese');
$.post('foodChoice.php', queryString);

Object literal
For short and simple pieces of data (that don’t include any punctuation symbols),
the query string method works well. But a more foolproof method supported by
jQuery’s get() and post() functions is to use an object literal to store data. As you’ll
recall from page 145, an object literal is a JavaScript method for storing name/value
pairs. The basic structure of an object literal is this:

{
 name1: 'value1',
 name2: 'value2'
}

You can pass the object literal directly to the get() or post() function. For example,
this code uses the query string method:

$.post('rankMovie.php','rating=5');

To use an object literal, rewrite the code like this:
$.post('rankMovie.php', { rating: 5 });

You can either pass the object literal directly to the get() or post() functions, or first
store it in a variable and pass that variable to get() or post():

var data = { rating: 5 };
$.post('rankMovie.php', data);

Of course, you can include any number of name/value pairs in the object that you
pass to the get() or post() function:

var data = {
 rating: 5,
 user: 'Bob'
}
$.post('rankMovie.php', data);

360 javascript & jquery: the missing manual

Ajax the jQuery Way

Or, if you directly pass an object literal to .post():
var data = $.post('rankMovie.php',
 {
 rating: 5,
 user: 'Bob'
 }
); // end post

jQuery’s serialize() function
Creating a query string or object literal for an entire form’s worth of name/value
pairs can be quite a chore. You have to retrieve the name and value for each form
element, and then combine them all to create one long query string or one large
JavaScript object literal. Fortunately, jQuery provides a function that makes it easy
to convert form information into data that the get() and post() functions can use.

You can apply the serialize() function to any form (or even just a selection of form
fields) to create a query string. To use it, first create a jQuery selection that includes
a form, then attach the serialize() function to it. For example, say you have a form
with an ID of login. If you wanted to create a query string for that form, you can do
so like this:

var formData = $('#login').serialize();

The var formData part just creates a new variable; $(‘#login’) creates a jQuery selec-
tion containing the form; finally, .serialize() collects all of the field names and the
values currently in each field and creates a single query string.

To use this with either the get() or post() functions, just pass the serialized results to
the function as the second argument after the URL. For example, say you want to
send the contents of the login form to a page named login.php. You can do so like this:

var formData = $('#login').serialize();
$.get('login.php',formData,loginResults);

This code sends whatever the visitor enters into the form to the login.php file using
the GET method. The final argument for get() here—loginResults—is the callback
function: the function that takes the data sent back from the server and does some-
thing with it. You’ll learn how to create a callback function next.

Processing	Data	from	the	Server
Ajax is usually a two-way street—a JavaScript program sends some data to the server
and the server returns data to the JavaScript program, which can then use that data
to update the page. In the previous pages, you saw how to format data and send it
to a server using the get() and post() functions. Now you’ll learn how to receive and
process the server’s response.

361chapter 11: introducing ajax

Ajax the jQuery Way

When the web browser sends off a request to the server using the XMLHttpRequest
object, it keeps listening for a response from the server. When the server responds, a
callback function handles the server’s response. That function is passed several argu-
ments that can be used by the function. First, and most important, the data returned
by the server is sent as the first argument.

You can format the data the server returns in any number of ways. The server-side
script can return a number, a word, a paragraph of text, or a complete web page. In
cases where the server is sending a lot of information (like a bunch of records from
a database), the server often uses XML or JSON. (See the box on page 365 for more
about XML; see page 370 for a discussion of JSON.)

The second argument to the callback function is a string indicating the status of the
response. Most of the time, the status is “success,” meaning that the server has suc-
cessfully processed the request and returned data. However, sometimes a request
doesn’t succeed—for example, the request was made to a file that doesn’t exist, or
there was an error in the server-side programming. If a request fails, the callback
function receives an “error” status message.

The callback function processes the information in some way, and, most of the time,
updates the web page in some way—replacing a submitted form with results from
the server, or simply printing a “request successful” message on the page, for ex-
ample. Updating the content of a web page is easy using jQuery’s html() and text()
functions described on page 138. Other methods of manipulating a page’s DOM are
discussed in Chapter 4.

To get a handle on a complete request/response cycle, take a look at a basic movie-
rating example (see Figure 11-6). A visitor can rate a movie by clicking one of five
links. Each link indicates a different rating. When the visitor clicks a link, the rating
and ID of the movie being rated are sent to a server-side program, which adds the
rating to the database, and then returns the average rating for that movie. The aver-
age rating is then displayed on the web page.

In order for this page to work without JavaScript, each of the links on the page points
to a dynamic server-side page that can process the visitor’s rating. For example, the
five-star rating link (see Figure 11-6) might be rate.php?rate=5&movie=123. The
name of the server-side file that processes the ratings is called rate.php, while the
query string (?rate=5&movie=123) includes two pieces of information for the server:
a rating (rate=5) and a number that identifies the movie being rated (movie=123).
You can use JavaScript to intercept clicks on these links and translate them into Ajax
calls to the server:

362 javascript & jquery: the missing manual

Ajax the jQuery Way

Figure 11-6:
On this page, a visitor clicks a link to rate the movie (top).
By adding Ajax to the mix, you can submit the rating to
the server without leaving the page. In fact, using the
response from the server, you can update the page’s
contents (bottom).

<div id="message">

1 $('#message a').click(function() {
2 var href=$(this).attr('href');
3 var querystring=href.slice(href.indexOf('?')+1);
4 $.get('rate.php', querystring, processResponse);
5 return false; // stop the link
6 });

Line 1 selects every link (<a> tag) inside of another tag with an ID of message (in this
example, each link used to rate the movie is contained within a <div> with the ID
message). A function is then applied to the click event for each of those links.

Line 2 extracts the HREF attribute of the link—so, for example, the href variable
might hold a URL like rate.php?rate=5&movie=123. Line 3 extracts just the part af-
ter the ? in the URL using the slice() method (discussed on page 428) to extract part
of the string, and the indexOf() method (see page 427) to determine where the ? is
located (this information is used by the slice() method to determine where to start
slicing).

Line 4 is the Ajax request. Using the GET method, a request containing the query
string for the link is sent to the server file rate.php (see Figure 11-7). The results
will then go to the callback function processResponse. Line 5 just stops the normal

363chapter 11: introducing ajax

Ajax the jQuery Way

link behavior and prevents the web browser from unloading the current page and
loading the linked-to page.

Figure 11-7:
This diagram shows how
JavaScript and the web server
interact. The get() function sends
information to the server, while
the callback function—process-
Response()—handles the infor-
mation returned by the server.

Web server

$.get(’rate.php’,’rate=5&movie=123’,processResponse);

function processResponse(data,status) {

}

rate.php?rate=5&movie=123

‘success’

‘3 stars’

Note: If you need a refresher on how functions work and how to create them, see page 100.

Finally, it’s time to create the callback function. The callback function receives data
and a string with the status of the response (‘success’ if the server sent information
back). Remember the callback function’s name is used in the request (see line 4 of
the code on the previous page). So in this example, the function’s name is process-
Response. The code to deal with the server’s response might look like this:

 1 function processResponse(data) {
 2 var newHTML;
 3 newHTML = '<h2>Your vote is counted</h2>';
 4 newHTML += '<p>The average rating for this movie is ';
 5 newHTML += data + '.</p>';
 6 $('#message').html(newHTML);
 7 }

The function accepts data arguments, which is the information returned by the web
server. This data could be plain text, HTML, XML, or JSON. Line 2 creates a new
variable that holds the HTML that will be displayed on the page (for example, “Your
vote is counted”). In lines 3 and 4, the newHTML variable is filled with some HTML,
including a <h2> tag and a <p> tag. The server’s response doesn’t come into play
until line 5—there the response from the server (stored in the data variable) is added
to the newHTML variable. In this case, the server returns a string with the average
rating for the movie: for example, ‘3 stars’.

364 javascript & jquery: the missing manual

Ajax the jQuery Way

Note: If you want to add a star rating system to your site, there’s a great jQuery plug-in that handles most
of the details available at http://www.wbotelhos.com/raty/.

Finally, line 6 modifies the HTML on the web page using jQuery’s html() function
(see page 138) by replacing the contents of the <div> with the ID of message with the
new HTML. The result is something like the bottom image in Figure 11-6.

In this example, the callback function was defined outside of the get() function; how-
ever, you can use an anonymous function (see page 148) if you want to keep all of
the Ajax code together:

$.get('file.php', data, function(data,status) {
 // callback function programming goes here
});

For example, you could rewrite line 4 on page 362 to use an anonymous function
like this:

$.get('rate.php', querystring, function(data) {
 var newHTML;
 newHTML = '<h2>Your vote is counted</h2>';
 newHTML += '<p>The average rating for this movie is ';
 newHTML += data + '.</p>';
 $('#message').html(newHTML);
}); // end get

Handling	Errors
Unfortunately, things don’t always go as planned. When using Ajax to talk to a web
server, things can go wrong. Maybe the web server is down for a moment, or a visi-
tor’s Internet connection drops momentarily. If that happens, the .get() and .post()
functions will fail without letting the visitor know. While this type of problem is rare,
it’s best to be prepared and letting your visitors know that something has temporarily
gone wrong can help them figure out what to do (like reload the page, try again, or
come back later).

To respond to an error, you simply add a .error() function to the end of the .get() or
.post() functions. The basic structure looks like this:

$.get(url, data, successFunction).error(errorFunction);

For example, you could rewrite line 4 on page 362 to look like this:
$.get('rate.php', querystring, processResponse).error(errorResponse);

Then create a new function named errorResponse that notifies the visitor that there
was a problem. For example:

function errorResponse() {
 var errorMsg = "Your vote could not be processed right now.";
 errorMsg += "Please try again later.";
 $('#message').html(errorMsg);
}

In this case, the function errorResponse runs only if there’s some kind of error with
the server or the server’s connection.

365chapter 11: introducing ajax

Ajax the jQuery Way

Tutorial:	Using	the	get()	Function
In this tutorial, you’ll use Ajax to submit information from a login form. When a
visitor supplies the correct user name and password, a message will appear letting
her know she’s successfully logged in. If the login information isn’t correct, an error
message will appear on the same page—without loading a new web page.

Note: In order to successfully complete this tutorial, you’ll need to have a running web server to test the
pages on. See the box on page 346 for information on how to set up a testing server on your computer.

POWER USERS’ CLINIC

Receiving XML from the Server
XML is a common format for exchanging data between
computers. Like HTML, XML lets you use tags to identify
information. Unlike HTML, you’re free to come up with
tags that accurately reflect the content of your data. For
example, a simple XML file might look like this:

<?xml version="1.0" ?>

<message id="234">

 <from>Bob</from>

 <to>Janette</to>

 <subject>Hi Janette</subject>

 <content>Janette, let's grab lunch to-
day.</content>

</message>

As you can see, there’s a main tag (called the root element)
named <message>—the equivalent of HTML’s <html> tag—
and several other tags that define the meaning of each
piece of data.

When using Ajax, you might have a server program that
returns an XML file. jQuery has no problem reading and
extracting data from an XML file. When you use the get()
or post() functions, if the server returns an XML file, the
data argument that’s sent to the callback function (see page
196) will contain the DOM of the XML file. In other words,
jQuery will read the XML file and treat it like another docu-
ment. You can then use jQuery’s selector tools to access
the data inside the XML.

For example, say a server-side file named xml.php re-
turned the XML listed above, and you want to retrieve the
text within the <content> tag. The XML file becomes the
returned data, so the callback function can process it. You
can use the jQuery find() function to search the XML to
find a particular CSS element using any of the regular se-
lectors you’d use with jQuery. For example, you can find
an element, class, ID, descendent selector (page 133), or
jQuery’s filters (page 135).

For example:

$.get('xml.php','id=234',processXML);

function processXML(data) {

 var messageContent=$(data).
find(‘content’).text();

}

The key here is $(data).find(‘content’), which tells jQuery
to select every <content> tag within the data variable.
Since, in this case, the data variable contains the returned
XML file, this code tells jQuery to look for the <content>
tag within the XML.

For learn more about XML, visit www.w3schools.com/
XML. If you want a little information on how to produce
XML from a server, check out www.w3schools.com/XML/
xml_server.asp. And if you want to read about jQuery’s
find() function you’ll find more information at http://api
.jquery.com/find.

www.w3schools.com/XML
www.w3schools.com/XML
http://api.jquery.com/find
http://api.jquery.com/find

366 javascript & jquery: the missing manual

Ajax the jQuery Way

Overview
You’ll start with the form pictured in Figure 11-8. It includes fields for supplying a
username and password to the server. When the form is submitted, the server at-
tempts to verify that the user exists and the password matches. If the information
supplied matches valid login credentials, then the server logs the visitor in.

Figure 11-8:
A basic login page is
a simple affair: just
a couple of fields
and a Submit button.
However, there’s
really no reason to
leave the page when
the user logs in. By
adding Ajax, you can
submit the visitor’s
credentials, then
notify whether he
logged in successfully
or not.

You’ll add Ajax to the form by sending the login information via an XMLHttpRequest.
The server will send a message to the callback function, which removes the form and
displays a “logged in” message if the login information is valid, or an error message
if it’s not.

The programming
See the note on page 29 for information on how to download the tutorial files. The
starting file contains the HTML form, ready for you to add some jQuery and Ajax
programming.

1. In a text editor, open the file login.html in the chapter11 folder.
The link to the jQuery library file and the $(document).ready() function are
already in place. You’ll start by using jQuery to select the form and adding a
submit event to it.

2. Click in the empty line inside the $(document).ready() function and type:
$('#login').submit(function() {

}); // end submit

367chapter 11: introducing ajax

Ajax the jQuery Way

The <form> tag has the ID login applied to it, so the jQuery selector—
$(‘#login’)—selects that form, while the submit() function adds an event handler
to the submit event. In other words, when a visitor tries to submit the form, the
function you’re about to create will run.
The next step is to collect the information from the form and format it as a
query string to submit to the server. You could do this by finding each form
field, extracting the value that the visitor had typed in, then constructing a que-
ry string by concatenating those different pieces of information. Fortunately,
jQuery’s serialize() function takes care of all these details in one shot.

3. Hit return to create an empty line and type:
var formData = $(this).serialize();

This line starts by creating a new variable to hold the form data, and then ap-
plies the serialize() function to the form. Recall that $(this) refers to the current
element, so in this case it refers to the login form, and is the same as $(‘#login’)
(see page 149 for more on how $(this) works). The serialize() function (see page
360), takes a form and extracts the field names and values and puts them in the
proper format for submitting to the server.
Now you’ll use the get() function to set up the XMLHttpRequest.

4. Hit Return to create another empty line and type:
$.get('login.php',formData,processData);

This code passes three arguments to the get() function. The first—‘login.php’—
is a string identifying where the data should be sent—in this case, a file on the
server named login.php. The second argument is the query string containing
the data that’s being sent to the server—the login information. Finally, process-
Data refers to the callback function that will process the server’s response. You’ll
create that function now.

5. Add another blank line below the last one and type:
1 function processData(data) {
2
3 } // end processData

These lines form the shell of the callback function; there’s no programming in-
side it yet. Notice that the function is set up to accept one argument (data),
which will be the response coming from the server. The server-side page is pro-
grammed to return a single word—pass if the login succeeded, or fail if the login
failed.
In other words, based on the response from the server, the script will either
print a message letting the visitor know he’s successfully logged on, or that he
hasn’t—this is the perfect place for a conditional statement.

368 javascript & jquery: the missing manual

Ajax the jQuery Way

Note: The server-side page used in this tutorial isn’t a full-fledged login script. It does respond if the
proper credentials are supplied, but it’s not something you could use to actually password-protect a site.
There are many ways to effectively password protect a site, but most require setting up a database or
setting up various configuration settings for the web server—these steps are beyond this basic tutorial.
For a real, PHP-based login script, visit http://www.html-form-guide.com/php-form/php-login-form
.html. This YouTube video also explains how to write the necessary PHP: http://www.youtube.com/
watch?v=4oSCuEtxRK8.

6. Inside the processData() function (line 2 in step 5), type:
1 if (data=='pass') {
2 $('#content').html('<p>You have successfully logged on!</p>');
3 }

Line 1 here checks to see if the information returned from the server is the
string ‘pass’. If it is, the login was successful and a success message is printed
(line 2). The form is inside a <div> tag with the ID content, so $(‘#content’).
html(‘<p>You have successfully logged on!</p>‘) will replace whatever’s inside
that <div> with a new paragraph. In other words, the form disappears and the
success message appears in its place.
To finish up, you’ll add an else clause to let the visitor know if he didn’t supply
the correct login information.

7. Add an else clause to the processData() function so that it looks like this (ad-
ditions are in bold):
1 function processData(data) {
2 if (data=='pass') {
3 $('#content').html('<p>You have successfully logged on!</p>');
4 } else {
5 $('#formwrapper).prepend('<p id="fail">Incorrect ↵
6 login information. Please try again</p>');
7 }}
8 } // end processData

Line 5 prints the message that the login failed. Notice that the prepend() func-
tion is used. As discussed on page 139, prepend() lets you add content to the be-
ginning of an element. It doesn’t remove what’s already there; it just adds more
content. In this case, you want to leave the form in place, so the visitor can try
again to log in a second time.

8. Save the file, and preview it in a web browser.
You must view this page through a web browser using a URL, like http://localhost/
chapter11/login.html, for this tutorial to work. See the box on page 346 for more
information on how to set up a web server.

9. Try to log into the site.
“But wait—you haven’t given me the username and password yet!” you’re prob-
ably thinking. That’s the point—to see what happens when you don’t log in cor-
rectly. Try to log in a second time: You’ll see the “Incorrect login information”
message appear a second time (see Figure 11-9). Since the prepend() function

http://www.html-form-guide.com/php-form/php-login-form.html
http://www.html-form-guide.com/php-form/php-login-form.html
http://www.youtube.com/watch?v=4oSCuEtxRK8
http://www.youtube.com/watch?v=4oSCuEtxRK8

369chapter 11: introducing ajax

Ajax the jQuery Way

doesn’t remove the first error message, it just adds the message a second time.
That doesn’t look right at all.
You have several ways to deal with this problem. You could, for example, insert
an empty div—<div id=“failMessage”>—below the form. Then simply replace
its HTML when the login fails. However, in this case, there’s no empty div tag
on the page. Instead, use a basic conditional statement to check whether the
error message already exists—if it does, there’s no need to add it a second time.

Figure 11-9:
jQuery’s prepend()
function adds HTML
to an already existing
element. It doesn’t
delete anything, so
if you’re not careful,
you may end up
adding the same
message over and
over again.

10. Add another conditional statement (lines 5 and 7 below):
 1 function processData(data) {
 2 if (data=='pass') {
 3 $('#content').html('<p>You have successfully logged on!</p>');
 4 } else {
 5 if ($('#fail').length==0) {
 6 $('#formwrapper).prepend('<p id="fail">Incorrect ↵
 7 login information. Please try again</p>');
 8 }
 9 }
10 } // end processData

Notice that the error message paragraph has an ID—fail—so you can use
jQuery to check to see if that ID exists on the page. If it doesn’t, then the pro-
gram writes the error message on the page. One way to check if an element
already exists on the page is to try to use jQuery to select it. You can then check

370 javascript & jquery: the missing manual

JSON

the length attribute of the results. If jQuery couldn’t find any matching elements,
the length attribute is 0. In other words, $(‘#fail’) tries to find an element with
the ID fail. If jQuery can’t find it—in other words, the error message hasn’t yet
been written to the page—then the length attribute is 0, the conditional state-
ment will be true, and the program writes the error message. Once the error
message is on the page, the conditional statement always evaluates to false, and
the error message doesn’t appear again.
Finally, you need to tell the web browser that it shouldn’t submit the form data
itself—you already did that using Ajax.

11. Add return false; at the end of the submit event (line 15 below). The finished
script should look like this:
 1 $(document).ready(function() {
 2 $('#login').submit(function() {
 3 var formData = $(this).serialize();
 4 $.post('login.php',formData,processData);
 5 function processData(data) {
 6 if (data=='pass') {
 7 $('#formwrapper).html('<p>You have successfully logged on!</p>');
 8 } else {
 9 if (! $('#fail').length) {
10 $('#formwrapper).prepend('<p id="fail">Incorrect ↵
11 login information. Please try again</p>');
12 }
13 }
14 } // end processData
15 return false;
16 }); // end submit
17 }); // end ready

12. Save the file and preview the page once again.
Try to log in again: the user name is 007 and the password is secret. A completed
version of this tutorial complete_login.html is in the chapter12 folder.

Note: As mentioned on page 356, jQuery’s post() and get() functions work identically even though,
behind the scenes, jQuery has to do two different set of steps to make the Ajax request work correctly. You
can check this out yourself by just changing get to post in the script (see line 4 in step 11). The server-side
script for this tutorial is programmed to accept either GET or POST requests.

JSON
Another popular format for sending data from the server is called JSON, which stands
for JavaScript Object Notation. JSON is a data format that’s written in JavaScript, and
it’s kind of like XML (see the box on page 365), in that it’s a method for exchanging
data. JSON is usually better than XML; however, since JSON is JavaScript, it works
quickly and easily in JavaScript program. XML needs to be taken apart—also called
parsed—by JavaScript, which is generally slower and requires more programming.

371chapter 11: introducing ajax

JSON

Note: Another type of JSON, known as JSONP, lets you request data from other domains, so you can,
for example, request images from Flickr (www.flickr.com) and display them on a page on your own site.
(As mentioned in the note on page 351, usually you can only make an Ajax request to your own domain.)
You’ll see JSONP in action in the next chapter.

You already learned how to create JSON back on page 370. In essence, JSON is sim-
ply a JavaScript object literal, or a collection of name/value pairs. Here’s a simple
example of JSON:

{
 firstName: 'Frank',
 lastName: 'Smith',
 phone: '503-555-1212'
}

The { marks the beginning of the JSON object, while the } marks its end. In between
are sets of name/value pairs; for example, firstName: ‘Frank’. Every name/value pair
is separated by a comma, but don’t put a comma at the end of the last pair (other-
wise, Internet Explorer will cough up an error).

Note: Alternatively, you can put the name in the name/value pair in quotes as well, like this:

{

 'firstName': 'Frank',

 'lastName': 'Smith',

 'phone': '503-555-1212'

}

You must use quotes if the name has a space in it, or other non-alphanumeric characters.

Think of a name value/pair just like a variable—the name is like the name of the
variable, and the value is what’s stored inside that variable. In the above example,
lastName acts like a variable, with the string ‘Smith’ stored in it.

When the web server responds to an Ajax request, it can return a string format-
ted like a JSON. The server doesn’t actually send JavaScript: It just sends text that’s
formatted like a JSON object. It isn’t actually real, usable JavaScript until the string
is converted into an actual JSON object. Fortunately, jQuery provides a special func-
tion, getJSON(), that handles all of the details. The getJSON() function looks and
works much like the get() and post() functions. The basic structure looks like this:

$.getJSON(url, data, callback);

The three arguments passed to the function are the same as for post() or get()—the
URL of the server-side page, data to send to the server-side page, and the name of
a callback function. The difference is that getJSON() will process the response from
the server (which is just a string) and convert it (through some JavaScript wizardry)
into a usable JSON object.

372 javascript & jquery: the missing manual

JSON

Note: PHP 5.2 has a built-in function—json_encode—to make it easy to create a JSON object out of a
traditional PHP array. So for AJAX applications, you can take a PHP array and quickly convert to a JSON
object to send back to the awaiting JavaScript code in the web browser. Visit www.php.net/manual/en/
function.json-encode.php to learn more.

In other words, getJSON() works just like post() or get(), but the data passed to the
callback is a JSON object. To use the getJSON() function, then, you only need to
learn how to process a JSON object with the callback function. For a basic example,
say you want to use Ajax to request information on a single contact from a server-
side file named contacts.php; that file returns contact data in JSON format (like the
JSON example on the previous page). A basic request would look like this:

$.getJSON('contacts.php','contact=123',processContacts);

This code sends a query string—contact=123—to contacts.php. Say the contacts.php
file uses that information to locate a single contact in a database and retrieve that
contact’s information. The result is sent back to the web browser and handed to the
callback function processContacts. The basic structure of the callback, then, would
look like this:

function processContacts(data) {

}

The processContacts() function has one argument—data—that contains the JSON
object from the server. Let’s look at how the callback can access information from
the JSON object.

Accessing	JSON	Data
There are two ways to access data in a JSON object: dot syntax or array notation.
Dot-syntax (see page 70) is a way of indicating an object’s property—specifically, by
adding a period between the name of the object and the property you wish to access.
You’ve seen this in use with properties of different JavaScript objects like strings and
arrays. For example, ‘abc’.length accesses the string’s length property, and, in this
example, returns the number of letters in the string ‘abc’, which is 3.

For example, suppose you create a variable and store an object literal inside it like this:
var bday = {
 person: 'Raoul',
 date: '10/27/1980'
};

In this case, the variable bday contains the object literal, so if you want to get the
value of person in the object, use dot syntax like this:

bday.person // 'Raoul'

To get the birth date:
bday.date // '10/27/1980'

www.php.net/manual/en/function.json-encode.php
www.php.net/manual/en/function.json-encode.php

373chapter 11: introducing ajax

JSON

The same is true with a JSON object that’s returned by the web server. For example,
take the following getJSON() example and callback function:

$.getJSON('contacts.php','contact=123',processContacts);
function processContacts(data) {

}

Assuming that the server returned the JSON example on page 371, that JSON object
is assigned to the variable data (the argument for the callback function process-
Contacts()), just as if this code had been executed:

var data = {
 firstName: 'Frank',
 lastName: 'Smith',
 phone: '503-555-1212'
};

Now within the callback function, you can access the value of firstName like this:
data.firstName // 'Frank'

And retrieve the last name of the contact like this:
data.lastName // 'Smith'

So, let’s say the whole point of this little Ajax program is to retrieve contact informa-
tion and display it inside of a <div> with the ID info. All of the programming for that
might look like this:

$.get JSON('contacts.php','contact=123',processContacts);
function processContacts(data) {
 var infoHTML='<p>Contact: ' + data.firstName;
 infoHTML+=' ' + data.lastName + '
';
 infoHTML+='Phone: ' + data.phone + '</p>';
 $('#info').html(infoHTML);
}

The final outcome would be a paragraph added to the page that looks something
like this:

Contact: Frank Smith
Phone: 503-555-1212

Complex	JSON	Objects
You can create even more complex collections of information by using object liter-
als as the values inside a JSON object—in other words, object literals nested within
object literals. (Sorry, but don’t put down this book yet.)

Here’s an example: Say you want the server to send back contact information for
more than one individual using JSON. You’ll send a request to a file named contacts
.php with a query string that dictates how many contacts you wish returned. That
code may look something like this:

$.getJSON('contacts.php','limit=2',processContacts);

374 javascript & jquery: the missing manual

JSON

The limit=2 is the information sent to the server, and indicates how many contacts
should be returned. The web server would then return two contacts. Say the contact
info for the first person matched the example above (Frank Smith), and a second set
of contact information was another JSON object like this:

{
 firstName: 'Peggy',
 lastName: 'Jones',
 phone: '415-555-5235'
}

The web server may return a string that represents a single JSON object, which com-
bines both of these objects like this:

{
 contact1: {
 firstName: 'Frank',
 lastName: 'Smith',
 phone: '503-555-1212'
 },
 contact2: {
 firstName: 'Peggy',
 lastName: 'Jones',
 phone: '415-555-5235'
 }
}

Assume that the callback function accepts a single argument named data (for ex-
ample, function processContacts(data)). The variable data would then be assigned
that JSON object, just as if this code had been executed:

var data = {
 contact1: {
 firstName: 'Frank',
 lastName: 'Smith',
 phone: '503-555-1212'
 },
 contact2: {
 firstName: 'Peggy',
 lastName: 'Jones',
 phone: '415-555-5235'
 }
};

Now, you could access the first contact object within the callback function like this:
data.contact1

And retrieve the first name of the first contact like this:
data.contact1.firstName

But, in this case, since you want to process multiple contacts, jQuery provides a
function that lets you loop through each item in a JSON object—the each() function.
The basic structure of the function is this:

$.each(JSON,function(name,value) {

});

375chapter 11: introducing ajax

JSON

You pass the JSON object, and an anonymous function (page 148) to the each()
function. That anonymous function receives the name and value of each item in the
JSON object. Here’s how the JSON object would look in use in the current example:

 1 $.getJSON('contacts.php','limit=2',processContacts);
 2 function processContacts(data) {
 3 // create variable with empty string
 4 var infoHTML='';
 5
 6 //loop through each object in the JSON data
 7 $.each(data,function(contact, contactInfo) {
 8 infoHTML+='<p>Contact: ' + contactInfo.firstName;
 9 infoHTML+=' ' + contactInfo.lastName + '
';
10 infoHTML+='Phone: ' + contactInfo.phone + '</p>';
11 }); // end of each()
12
13 // add finished HTML to page
14 $('#info').html(infoHTML);
15 }

Here’s how the code breaks down:

1. Line 1 creates the Ajax request with data (limit=2) and assigns the callback
function (processContacts).

2. Line 2 creates the callback function, which accepts the JSON object sent back
from the server and stores it in the variable data.

3. Line 4 creates an empty string. The HTML that eventually gets added to the
page will fill it.

4. Line 7 is the each() function, which will look through the objects in the
JSON data.
The each() function takes the JSON object as its first argument (data) and an
anonymous function as the second argument. The process is diagrammed in
Figure 11-10. Essentially, for each of the main objects (in this example, contact1
and contact2), the anonymous function receives the name of the object as a
string (that’s the contact argument listed in line 7) and the value for that object
(that’s the contactInfo argument). In this case, the contactInfo variable will hold
the object literal containing the contact information.

376 javascript & jquery: the missing manual

JSON

Figure 11-10:
You can use jQuery’s each()
function to loop through a
JSON object to perform tasks
on nested objects. You can
also use the each() function
to loop through arrays. To
learn more about this useful
function, visit http://docs
.jquery.com/Utilities/jQuery
.each#objectcallback.

function processContacts(data) {

 var infoHTML='';

 $.each(data,function(contact, contactInfo) {
 infoHTML+='<p>Contact: ' + contactInfo.firstName;
 infoHTML+=' ' + contactInfo.lastName + '
';
 infoHTML+='Phone: ' + contactInfo.phone + '</p>';
 });

 $('#info').html(infoHTML);
}

{

 contact1 : {

 firstName: 'Frank',

 lastName: 'Smith',

 phone: '503-555-1212'

 },

 contact2 : {

 firstName: 'Peggy',

 lastName: 'Jones',

 phone: '415-555-5235'

 }

}

JSON Data from Server

Callback Function

5. Lines 8–10 extract the information from one contact.
Remember that the each() function is a loop, so lines 8–10 will run twice—once
for each of the contacts.

6. Line 14 updates the web page by adding the HTML to the page.
The final result will be the following HTML:
<p>Contact: Frank Smith

Phone: 503-555-1212</p>
<p>Contact: Peggy Jones

Phone: 415-555-5235</p>

http://docs.jquery.com/Utilities/jQuery.each#objectcallback
http://docs.jquery.com/Utilities/jQuery.each#objectcallback
http://docs.jquery.com/Utilities/jQuery.each#objectcallback

377

chapter
12

Flickr and Google Maps

In the previous chapter, you learned the basics of Ajax: what it is, how it works,
and how jQuery can simplify the process of Ajax programming. Since Ajax is all
about the two-way communication between web browser and web server, under-

standing server-side programming is necessary if you really want to harness Ajax’s
power. However, you don’t need to be a server-side programming guru to use Ajax
successfully. In fact, you can take advantage of the services offered by popular web-
sites like Flickr, Twitter, and Google Maps to retrieve photos, tweets, and maps, and
place them directly inside your web pages.

Introducing JSONP
In the last chapter you learned that, for security reasons, Ajax requests are limited
to the same domain. That is, the page making an Ajax request must be on the same
server as the page responding to the request. This is a policy enforced by the web
browser to keep one site from maliciously attempting to contact another site (like
your bank). There’s one way around that however. While a web browser can’t send
an XMLHTTP request to a different website, it can download resources from other
sites, including pictures, style sheets, and external JavaScript files.

JSONP (which stands for JSON with padding) provides one way to retrieve informa-
tion from another site. Basically, instead of making an Ajax request of the foreign
site, you load a script that contains the JSON code in it. In other words, it’s like link-
ing to an external JavaScript file on Google.

378 javascript & jquery: the missing manual

Adding a Flickr Feed
to Your Site

You can’t request just any bit of information that you’d like from another site, how-
ever. For JSONP to work, the foreign site must be set up to respond with JSONP.
Most sites aren’t set up to send information this way, but many of the big sites like
Google Maps, Twitter, Flickr, Facebook, Netflix, and YouTube offer an API (Applica-
tion Programming Interface) that lets you request data like a map, a photo, movie
review text, and so on, using jQuery’s $.getJSON() function (see Figure 12-1).

Figure 12-1:
While AJAX is restrict-
ed to the requesting
information from
the same domain, a
workaround called
JSONP lets you re-
trieve JSON data from
another site by re-
questing a JavaScript
file from that site. This
technique lets you
access tweets from
Twitter, maps from
Google, and photos
from Flickr (pictured
here) and embed
them directly in your
own web pages.

Adding a Flickr Feed to Your Site
Flickr is a popular photo-sharing site. It’s been around for years and has millions of
photographs. A lot of websites like to include photos either taken by the site owner
or within a Flickr group (a group is a collection of photos submitted by multiple peo-
ple around a common subject like Web Design, landscape photography, and so on).

379chapter 12: flickr and google maps

Adding a Flickr Feed
to Your Site

Flickr gives you a couple of ways to retrieve photos and related information. The
most powerful, but also most complex, method is to use Flickr’s API to search for
photos. This method requires that you sign up at Flickr and get a special API key (a
string of numbers and letters that identifies you). It also requires some fancy pro-
gramming to work. The simplest way is to use the Flickr Feed Service. Feeds are a
way to keep people up-to-date with a site’s information. For example, you may have
seen sites with RSS feeds that let you view the latest news and information from that
website. Flickr offers a similar service for its photos—you can get a listing of the 20
most recent photos from a particular person or a particular group.

In this section, you’ll use the feed method to get a collection of photos from Flickr
and display them on a web page, and in the process, learn how to use jQuery’s
$.getJSON() function to retrieve JSONP data from another website.

Note: If you want more control in selecting and displaying Flickr photos, there are plenty of jQuery plug-
ins to help. The jQuery Flickr Photo Gallery plug-in (http://johnpatrickgiven.com/jquery/flickr-gallery/) is
particularly nice.

Constructing	the	URL
Flickr offers several different URLs for accessing feeds for different types of photos
(see www.flickr.com/services/feeds/ for a full list). For example, you use http://api.flickr
.com/services/feeds/photos_public.gne to access photos from specific Flickr accounts
(such as your own account if you have one), and http://api.flickr.com/services/feeds/
groups_pool.gne to retrieve photos from a particular group (like the Web Design
group, which features photos and images to inspire great web design).

Once you know which type of photo feed you’d like and the basic URL that accom-
panies it, you need to add some additional information to retrieve the photos you’re
interested in. To do so, you add a query string with several pieces of information
tagged on. (As you’ll recall from page 357, a query string is a ? mark at the end of a
URL, followed by one or more name/value pairs: http://api.flickr.com/services/feeds/
groups_pool.gne?id= 25053835@N03&&format=json, for example.)

• Add one or more IDs. To select photos from a particular group or one or more
individual accounts, you add id, plus an = sign followed by a individual or group
account number. For example, to access a group photo feed for the Web Design
group, you’d use this group photo feed and add the ID for the group, like this:
http://api.flickr.com/services/feeds/ ↵
groups_pool.gne?id=37996591093@N01

For individual Flickr feeds, you’d use the public photos feed and use one or
more IDs. For example, to retrieve photos from both the Smithsonian (which
has its own Flickr account) and the Library of Congress, you can use the ids
names and the public photo feed like this:
http://api.flickr.com/services/feeds/ ↵
photos_public.gne?ids=8623220@N02,25053835@N03

http://api.flickr.com/services/feeds/photos_public.gne
http://api.flickr.com/services/feeds/photos_public.gne
http://api.flickr.com/services/feeds/groups_pool.gne
http://api.flickr.com/services/feeds/groups_pool.gne
http://api.flickr.com/services/feeds/groups_pool.gne?id= 25053835@N03&&format=json
http://api.flickr.com/services/feeds/groups_pool.gne?id= 25053835@N03&&format=json

380 javascript & jquery: the missing manual

Adding a Flickr Feed
to Your Site

To use multiple IDs, separate each with a comma. Note that you can only use
multiple IDs for retrieving individual accounts: You can’t use the group feed and
retrieve photos from multiple groups.

Tip: If you know someone’s Flickr user name, you can get his Flickr ID using this website: http://idgettr.com/.

• Add the JSON format. The Flickr photo feed service is very flexible and can
return photo information in many different formats from RSS, to Atom, CSV,
and JSON. To let Flickr know that you want data in JSON format, you need to
add &format=json to the query string. For example, to get the a Flickr feed of
the Smithsonian Museum’s Flickr photos in JSON format, you’d use this URL:
http://api.flickr.com/services/feeds/ ↵
photos_public.gne?ids=25053835@N03&format=json

Go ahead and type the URL above into a web browser (if you’re feeling lazy, you
can copy and paste the URL from the flickr_json.txt file in the chapter12 folder
of the tutorial files). You’ll see a bunch of data; actually, an object literal contain-
ing a bunch of information. That’s what you receive from Flickr when you use
the $.getJSON() function (discussed on page 371). You need to use JavaScript to
dissect that object and then use it to build a neat little gallery of images. (The
structure of Flickr’s JSON feed is discussed on page 382, and taking apart the
feed so you can use it is shown in the tutorial on page 383.)

• Add a JSONP callback to the URL. Finally, for a page on your site to success-
fully request JSON data from another website, you need to add one last bit to
the URL: &jsoncallback=?. Remember that for security reasons you can’t just
send an XMLHTTP request to a different domain. To get around that problem,
the &jsoncallback=? piece notifies Flickr that you want to receive JSONP data
and lets jQuery’s $.getJSON() function treat this request as if the web browser
were simply requesting an external JavaScript file. In other words, to receive a
feed of the Smithsonian Museum’s latest Flickr photos, you’d need to pass the
$.getJSON() function a URL like this:
http://api.flickr.com/services/feeds/ ↵ photos_public.gne?ids=25053835@
N03&format=json&jsoncallback=?

A few other options for the public photos feed
For Flickr’s public photos feed, you can add a couple of other options to refine the
information the feed returns. For example, say you and a couple of friends like to
take pictures of chipmunks and post them up on Flickr, and you want to get a feed of
the 20 latest chipmunk photos you and your friends have taken. You can do this by
filtering the feed by specifying one or more tags.

On Flickr, you can tag any photo with one or more words; a tag is a word or short
phrase that describes an element of the photo. For example, you might tag a particu-
larly bright photo of a sunset with the word “sunset.” Any photo can have multiple
tags, so you might tag that sunset photo with the words “sunset, orange, beach.”

381chapter 12: flickr and google maps

Adding a Flickr Feed
to Your Site

Note: You can only search for tags on Flickr’s public photo feed (www.flickr.com/services/feeds/docs/
photos_public/). You can’t, for example, search for photos with a particular tag or tags from a group (like
the Flickr Web Design group).

Flickr’s feed service provides options that let you search a feed for specific tags:

• tags. Add the tag keyword with one or more comma, separated keywords to
the URL to specify a tag; for example: &tags=fireworks,night. Say your Flickr
ID is 8623220@N02, and your friend’s is 25053835@N03. You could get both of
your feeds, plus search only for photos with the tag of “chipmunk” with a long-
winded URL like this:
http://api.flickr.com/services/feeds/ ↵
photos_public.gne?ids=25053835@N03,8623220@N02 ↵
&tags=chipmunk&format=json&jsoncallback=?

• tagmode. Normally when you search for a set of tags, Flickr only re-
trieves photos that match all of the tags. For example, say you added
?tags=chipmunks,baseball,winter to a feed. This code finds only photos of
chipmunks playing baseball in the winter. If you wanted pictures of chip-
munks, or baseball or the winter (in other words, at least one of the tags), add
&tagmode=any to the URL. For example:
http://api.flickr.com/services/feeds/ ↵
photos_public.gne?ids=25053835@N03,8623220@N02 ↵
&tags=chipmunk&tagmode=any&format=json&jsoncallback=?

Using	the	$.getJSON()	Function
Using the $.getJSON() function to retrieve a photo feed from Flickr works the same
as retrieving JSON data from your own site. The basic structure for the function is
the same. For example, here’s the setup for retrieving the Smithsonian’s Flickr feed:

1 var flickrURL = "http://api.flickr.com/services/feeds/ ↵
 photos_public.gne?ids=25053835@N03&format=json&jsoncallback=?"
2 $.getJSON(flickrURL, function(data) {
3 // do something with the JSON data returned
4 }); // end get

In this example, line 1 creates a variable named FlickrURL and stores the URL (using
the rules discussed in the last section). Line 2 sends the AJAX request to the URL
and sets up an anonymous function for processing that data. After sending an Ajax
request, the code retrieves data back from the server—in this example, that data is
sent to the anonymous function and is stored in the variable called data. You’ll learn
how to process the data in a few pages, but first, you need to understand what Flickr’s
JSON data looks like.

Understanding	the	Flickr	JSON	Feed
As discussed on page 370, JSON is simply a JavaScript object literal. It can be as
simple as this:

382 javascript & jquery: the missing manual

Adding a Flickr Feed
to Your Site

{
 firstName : 'Bob',
 lastName : 'Smith'
}

In this code, firstName acts like a key with a value of Bob—a simple string value.
However, the value can also be another object (see Figure 11-10 on page 376), so
you can often end up with a complex nested structure—like dolls within dolls. That’s
what Flickr’s JSON feed is like. Here’s a small snippet of one of those feeds. It shows
the information retrieved for two photos:

1 {
2 "title": "Uploads from Smithsonian Institution",
3 "link": "http://www.flickr.com/photos/smithsonian/",
4 "description": "",
5 "modified": "2011-08-11T13:16:37Z",
6 "generator": "http://www.flickr.com/",
7 "items": [
8 {
9 "title": "East Island, June 12, 1966.",

10 "link": "http://www.flickr.com/photos/smithsonian/5988083516/",
11 "media": {"m":"http://farm7.static.flickr.com/6029/5988083516_

bfc9f41286_m.jpg"},
12 "date_taken": "2011-07-29T11:45:50-08:00",
13 "description": "Short description here",
14 "published": "2011-08-11T13:16:37Z",
15 "author": "nobody@flickr.com (Smithsonian Institution)",
16 "author_id": "25053835@N03",
17 "tags": "ocean birds redfootedbooby"
18 },
19 {
20 "title": "Phoenix Island, April 15, 1966.",
21 "link": "http://www.flickr.com/photos/smithsonian/5988083472/",
22 "media": {"m":"http://farm7.static.flickr.com/6015/5988083472_

c646ef2778_m.jpg"},
23 "date_taken": "2011-07-29T11:45:48-08:00",
24 "description": "Another short description",
25 "published": "2011-08-11T13:16:37Z",
26 "author": "nobody@flickr.com (Smithsonian Institution)",
27 "author_id": "25053835@N03",
28 "tags": ""
29 }
30 }

Flickr’s JSON object has a bit of information about the feed in general: That’s the
stuff at the beginning—“title”, “link”, and so on. The “title” element (line 2) is the
name of that feed. In this case, “Uploads from Smithsonian Institution”—the “link”
element (line 3)—points to the main Flickr page for the Smithsonian institution. You
can use this information, for example, as a headline presented before displaying
the photos.

To access that information, you use the dot-syntax described on page 70. For ex-
ample, say you used the code from the previous section (page 381): The anonymous
function used to process the data stores the JSON response in a variable named data

383chapter 12: flickr and google maps

Tutorial: Adding
Flickr Images to Your

Site
(see line 2 on page 381). Then, to access the title of the feed, you’d access the “title”
property of the “data” object like this:

data.title

The most important part of the feed is the “items” property (line 7), which contains
additional objects, each containing information about one photo. For example, lines
8–18 provide information for one photo, while lines 19-29 are about another photo.
Within each item object, you’ll find other properties like the title of the photo (line
9), a link to that photo’s Flickr page (line 10), the date the photo was taken (line 12), a
description (the “Short description here” on line 13 [the curators at the Smithsonian
must have been feeling a little lazy that day]), and so on.

Another important element for each photo is “media”—it’s another object. For ex-
ample:

{
 "m":"http://farm7.static.flickr.com/6029/5988083516_bfc9f41286_m.jpg"
}

The “m” means “medium,” and its value is a URL to the photo. Flickr photos are of-
ten available in different sizes, like medium, thumbnail, and small (which is a small
square image). If you want to display the image on a page, then this URL is what
you’re after. You can use it to insert a tag in the page and point to that photo
on the Flickr server. You’ll see how in the tutorial.

Tutorial: Adding Flickr Images to Your Site
In this tutorial, you’ll put together all the pieces to retrieve the photo feed from the
Smithsonian Institution, display thumbnail images of the photos, and add links to
each image, so a visitor can click the thumbnail to go to Flickr and see the photos page.

Note: See the note on page 29 for information on how to download the tutorial files.

1. In a text editor, open the file flickr.html in the chapter12 folder.
You’ll start by creating a few variables to store the components of the URL re-
quired to talk to Flickr.

2. Click in the empty line inside the $(document).ready() function, and type:
var URL = "http://api.flickr.com/services/feeds/photos_public.gne";
var ID = "25053835@N03";
var jsonFormat = "&format=json&jsoncallback=?";

Each variable here is just part of that much longer URL discussed on page 379.
Breaking each piece into a separate variable makes it easy to adjust this code.
For example, if you want to get a photo feed from another Flickr user, just
change the ID variable (if you have a Flickr account, go ahead and plug in your
ID number in here [if you don’t know your Flickr ID, visit http://idgettr.com/]).

384 javascript & jquery: the missing manual

Tutorial: Adding
Flickr Images to Your
Site

Tip: If you want to retrieve the photos from a Flickr group, like the Web Design Group, then change the
URL in step 2 to: http://api.flickr.com/services/feeds/groups_pool.gne?id=37996591093@N01 and the ID
to the ID of the Flickr group.

Next you’ll put these variables together to construct a complete URL.
3. Add another line of code after the three you just typed:

var ajaxURL = URL + "?id=" + ID + jsonFormat;

This combines all the variables plus the opening part of the query string—?id=—
to form a complete URL like the ones you learned about on page 379: http://
api.flickr.com/services/feeds/photos_public.gne?id=25053835@N03&format
=json&jsoncallback=?. Now it’s time to get into the Ajax part of this and use
jQuery $.getJSON() function.

4. After the line you just added, type this:
$.getJSON(ajaxURL,function(data) {

}); // end get JSON;

Here’s the basic shell of the $.getJSON() function: It will contact the URL you
constructed in steps 2 and 3, and receive data back from Flickr. That data is
passed to an anonymous function and stored in a variable named data. You can
then take that data and begin to use it on the page. First, you’ll get the title of the
feed and replace the <h1> tag that’s currently on the page with it.

5. Add the bolded line of code below to the code from the last step:
$.getJSON(ajaxURL,function(data) {
 $('h1').text(data.title);
}); // end get JSON;

This is a basic jQuery selector—$(‘h1’)—and function—.text()—that selects the
<h1> tag currently on the page and replaces the text inside it. The actual JSON
feed is stored in the data variable. To access its components you can use dot-
syntax (page 70), so data.title retrieves the title of the feed. If you save the page
now and preview it in a web browser, you should see a bold headline reading
“Uploads from Smithsonian Institution.”
To add the photos, you’ll need to loop through the items object (see page 383)
returned by the Flickr feed.

6. Add the bolded lines of code below to the code from the last step:
$.getJSON(ajaxURL,function(data) {
 $('h1').text(data.title);
 $.each(data.items,function(i,photo) {
 }); // end each
}); // end get JSON;

You read about the .each() function on page 147—that function is used to loop
through a jQuery selection. The $.each() function is different, but similar. It’s a
generic loop utility that you can use to loop through either an array (page 59)
or a series of objects. You pass the $.each() function an array or an object literal

385chapter 12: flickr and google maps

Tutorial: Adding
Flickr Images to Your

Site
and an anonymous function. The $.each() function then loops through the ar-
ray or the object literal and runs the anonymous function once for each item.
That anonymous function receives two arguments (i and photo in the code in
this step), which are variables that contain the index of the item and the item
itself. The index is the number of the item through the loop: This works just
like an index for an array (page 62). For example, the first item in the loop has
an index of 0. The second argument (photo in this example), is the actual photo
object containing the photo’s name, description, URL, and so on as described
on page 383.
In the case of the Flickr feed, data.items represents the photo objects in the
JSON feed (page 383), so the $.each() function passes the object for each photo
to the anonymous function in the photo variable. In other words, this code loops
through each of the photos in the feed and then does something. In this case,
you’ll simply create a series of thumbnail images that links to each photo’s Flickr
page. The goal will be to create some basic HTML to display each image and
include a link. For example:

Only two pieces of information—the URL of the photo’s Flickr page, and the
path to the photo file—are required to build this. You’ll just build up a long
string that looks just like the HTML above, only replacing the URL and image
path for each of the images.

7. Inside the $.each() function add the code below in bold:
$.each(data.items,function(i,photo) {
 var photoHTML = '';
 photoHTML += '';
 photoHTML += '';
}); // end each

This code starts by creating a variable—photoHTML—which stores an open-
ing tag; each subsequent line adds more to the variable (for a refresher
on what += means and how it works, see page 54). The key elements here are
photo.link and photo.media.m. If you look at the JSON code on page 382, you
can see that each photo has various properties like title (the name of the photo)
and description (a short description of the photo). The link property points to
the photo’s page on Flickr.com, while the media object has a property named
“m,” which contains the path to the medium size version of the graphic file.
Altogether this code builds up HTML like that pictured in step 6. Now you just
need to add that code to the page.

8. Add the code in bold below:
$.each(data.items,function(i,photo) {
 var photoHTML = '';
 photoHTML += '';
 photoHTML += '';

386 javascript & jquery: the missing manual

Tutorial: Adding
Flickr Images to Your
Site

 $('#photos').append(photoHTML);
}); // end each

The $(‘#photos’) part selects an already existing <div> tag on the page, while
the append() function (discussed on page 139) adds the HTML to the end of
that div. In other words, each time through the loop, another chunk of HTML
is added to that div.

9. Save the page and preview it in a web browser.
You should see 20 photos load on the page. (If you don’t see anything, double-
check your code and use your web browser’s error console [page 34] to look for
any syntax errors.) The problem is the photos all vary in size and don’t form a
nice grid on the page. That’s because the Flickr feed only provides the path to
medium-sized Flickr images.
Flickr does have nice square thumbnails of all their photos as well. Display-
ing those identically-sized photos together on a page makes a nice, orderly
presentation. Fortunately, it’s easy to request those thumbnail images. Flickr
uses a consistent naming convention for their photos: The path to a medium-
sized image is something like http://farm7.static.flickr.com/6029/5988083516_
bfc9f41286_m.jpg, while the thumbnail path for that same image is http://farm7
.static.flickr.com/6029/5988083516_bfc9f41286_s.jpg. The only difference is at
the end of the file name: _m indicates a medium image, _s is a small square
thumbnail image (75 pixels by 75 pixels), _t is a small image that’s at most 100
pixels on the longest side, _o indicates the original image (the original size the
file that the was uploaded to Flickr), and _b is a large image (at most, 1,024 pix-
els tall or wide). Simply by adjusting the file name (replacing the _m with _s, for
example), you can display a different size file. Fortunately, JavaScript provides a
handy method of quickly swapping characters in a string.

10. In the code change photo.media.m to photo.media.m.replace(‘_m’,’_s’). The
final code on the page should look like this:
$(document).ready(function() {
var URL = "http://api.flickr.com/services/feeds/photos_public.gne";
var ID = "25053835@N03";
var jsonFormat = "&format=json&jsoncallback=?";
var ajaxURL = URL + "?id=" + ID + jsonFormat;
$.getJSON(ajaxURL,function(data) {
 $('h1').text(data.title);
 $.each(data.items,function(i,photo) {
 var photoHTML = '';
 photoHTML += '';
 photoHTML += '</
a>';
 $('#photos').append(photoHTML);
 }); // end each
}); // end get JSON

}); // end ready

JavaScript’s replace() method (discussed on page 443) works with strings, and
takes two arguments—the string to find (‘_m’ in this case) and the string to
replace it with (‘_s’).

387chapter 12: flickr and google maps

Adding Google Maps
to Your Site

11. Save the page and preview it in a web browser.
Now you should see 20 neatly aligned, square thumbnails (see Figure 12-1).
Click a thumbnail to see a larger image on Flickr’s site. A working version of this
tutorial—complete_flickr.html—is available in the chapter12 folder.

Note: The Flickr feed only provides 20 images maximum. You can retrieve more than 20 from any one
feed. What if you only want to display 10 images from the feed? See the file complete_flickr_limit_photos
.html in the chapter12 folder for the solution.

Adding Google Maps to Your Site
Google Maps (http://maps.google.com) is an original poster-child for the JavaScript
revolution. The ability to zoom in and out of a map, move around city streets, and
get driving directions in a flash makes Google Maps an incredibly useful site. And
thanks to the clever use of Ajax, the site’s responsiveness makes it feel nearly like a
desktop program.

But Google Maps offers even more power to web designers: The Google Maps ser-
vice lets you embed a map in your own site. If you run a brick-and-mortar business
(or build sites for businesses), being able to provide an easy-to-understand map and
directions can bring more customers through your door. Fortunately, thanks to Go-
Map, a jQuery plug-in, it’s easy to add interactive maps directly to your own web
pages (see Figure 12-2).

Figure 12-2:
While a simple picture of a
map is a fine way to indicate
the location of your (or your
client’s) business, an interac-
tive map like those available
at http://maps.google.com is
better. Visitors can zoom into,
zoom out of, and pan across a
Google Map with ease. Thanks
to the GoMap jQuery plug-in,
it’s easy to add a Google Map
to your website.

388 javascript & jquery: the missing manual

Adding Google Maps
to Your Site

POWER USERS’ CLINIC

Going Further with jQuery and Ajax
There are loads of other jQuery plug-ins that can make Ajax
development go faster. In some cases, you need to provide
the server-side programming—the plug-in just takes care of
the JavaScript part. A few other programs supply the ba-
sic server-side programming as well. Here are a few good
ones:

• Form	plug-in. The jQuery Form plug-in is a simple
way to add Ajax to your form submissions. The plug-
in goes far beyond the basics discussed in the pre-
vious chapter and includes file uploading ability. It
works with form validation as well. For more informa-
tion, visit http://jquery.malsup.com/form/.

• Autocomplete. The jQuery UI project offers an au-
tocomplete plug-in (http://jqueryui.com/demos/auto-
complete/) that lets you add the nifty functionality
you’ll find in search fields on Google and Amazon.
Begin typing a word into a text field, and a drop-down
menu suggesting possible matches appears. This
saves your visitors from having to type so much and
also provides a helpful list of suggestions. Working
with your web server and Ajax, you can add mind-
reading like abilities to search forms.

• Ajax	File	Upload. If you want to add file uploads to
your site, make the process seamless for your users
by using Ajax to send the files. The Uploadify plug-in
(www.uploadify.com/) makes the process easy.

• Taconite. Using Ajax, you can receive information
from a server and update a web page. However, you
may want to update multiple areas of a page—for
example, if a visitor logs in using an Ajax form, you
might want to show his login status in one part of the
page, a list of the pages he visited last time he was
at the site in another part of the page, and display
a shopping cart in yet another area of the page. The
Taconite plug-in lets you receive a basic XML file from
the web server with simple instructions on what areas
of a web page to update and what information to use.
You can find out more about this plug-in at http://
jquery.malsup.com/taconite/.

• Twitter. If you want an easy way to add a Twitter
stream to your web pages, check out the Tweet! plug-
in (http://tweet.seaofclouds.com/). Tweet! lets you
add your own Twitter stream, search for tweets from
other Twitter users, or even just search Twitter for
key words.

The GoMap plug-in (www.pittss.lv/jquery/gomap/), created by Jevgenijs Shtrauss,
lets you add a Google map to any web page, request driving directions between two
points on a map, add markers to highlight locations on a map, and much more. The
basic steps to using the plug-in are:

1. Attach an external JavaScript file from Google Maps.
In order to access the maps service, you need to load a script from Google. The
<script> tag you use looks like this:
<script src="http://maps.google.com/maps/api/js?sensor=false"></script>

This code loads the necessary JavaScript that Google relies on for accessing its
map services. The gmap3 plug-in builds off of the code in this file to provide a
more friendly way to add maps to your pages.

389chapter 12: flickr and google maps

Adding Google Maps
to Your Site

Note: GoMap uses version 3 of the Google Maps API (Application Programming Interface). The older
Google Maps API required you to sign up at Google and get a unique key to use Google Maps on your
site. Fortunately, you no longer have to sign up with Google to add maps to your site.

2. Attach two jQuery files.
Of course, you need the jQuery library, as well as the GoMap file. The GoMap
file is available from www.pittss.lv/jquery/gomap. This file provides all the pro-
gramming that makes adding a map to your site so easy. So in addition to the
<script> tag from step 2, you’ll add code that’s something like this:
<script src="js/jquery-1.6.3.min.js"></script>
<script src="js/jquery.gomap-1.3.2.min.js"></script>

Note: We’ve included a copy of the GoMap plug-in file in the _js folder in the tutorial files (see the Note
on page 29 for information on accessing the tutorial files).

3. Add an empty <div> tag with an ID to the page.
GoMap will add a map in this empty tag, so place the <div> where you want the
map to appear on the page. Also, you need to provide a way of identifying that
tag, so add an ID. The HTML for this might look like this:
<div id="map"></div>

In addition, you must add a CSS rule to the page’s stylesheet to define the height
and width of the map on the page. For example:
#map {
 width: 760px;
 height: 400px;
}

4. Call the goMap() function.
Finally, add a new <script> tag, the document.ready() function, and call the go-
Map() function. To use the goMap() function, you select the map <div> using a
jQuery selector—$(‘#map’)—then add gmap3():
<script>
$(document).ready(function() {
 $('#map').goMap();
});
</script>

Just calling the jmapgoMap() function, though, will give you a map that’s cen-
tered somewhere in Latvia. Most likely (unless you’re from Latvia) you’ll want
to have the map point to a specific location (such as your or your client’s busi-
ness location) and zoom in to a level that shows more detail like the names of
streets. You’ll learn how to do that next.

390 javascript & jquery: the missing manual

Adding Google Maps
to Your Site

Setting	a	Location	for	the	Map
A Google Map has a center point as defined by numbers that represent the location’s
longitude and latitude. If you want to center your map on a place—such as your
business’s address or the location of your next birthday party—you need to get that
location’s longitude and latitude. That’s easy:

1. Go to http://itouchmap.com/latlong.html, type an address in the Address box,
and then click Go.
This helpful website provides the latitude and longitude of any location of the
address you specify. Write down or copy this information; you’ll use it in the
next step.

Tip: You can also get latitude and longitude information directly from Google Maps. Go to http://maps
.google.com and search for a location you’d like to use in your map. Then in your browser’s address bar,
type javascript:void(prompt(‘’,gApplication.getMap().getCenter()));. A JavaScript alert box appears with
the latitude and longitude of the center point of the current map.

2. Update the goMap() function by adding the following code:

1 <script>
2 $(document).ready(function() {
3 $('#map').goMap({
4 latitude : 45.53940,
5 longitude : -122.59025
6 }); // end goMap
7 }); // end ready
8 </script>

In this case, you pass an object literal—that’s the opening { at the end of line
3 and the closing } at the beginning of line 6—that contains options for the
plug-in. The first item—latitude—specifies the latitude of the center of the map,
while the second item—longitude—is the longitude of the center of the map.
You should replace the two numbers listed on lines 5 and 6 with the latitude and
longitude you’d like for your map.
Fortunately, the GoMap plug-in is versatile enough to simply use an address
as the location for the map. You can simply replace the latitude and longitude
items with an address item that contains a string with the desired address. For
example:
$('#map').goMap({
 address : '2200 NE 71st Ave Portland, OR, USA'
}); // end goMap

If you only need a rough area, such as a map centered on a particular city, you
can do that too:
 $('#map').goMap({
 address : 'Portland, OR, USA'
}); // end goMap

391chapter 12: flickr and google maps

Adding Google Maps
to Your Site

In fact, you can use anything that works in the Google Maps search box (http://
maps.google.com) as the address element, even the names of well-known land-
marks like “Kennedy Space Center” or “Eiffel Tower.” However, Google may not
always be able to locate an address, and addresses aren’t very good when you
want to highlight a particular spot in a very large area—like a spot in a favorite
park. In that case, you’ll need to use latitude and longitude values as described
above.

Note: Another Google Maps plug-in worth checking out is GMAP3 (http://gmap3.net/). It offers many
more features than the GoMap plug-in, but it’s also more complex to use and is a larger file. One nice
feature of GMAP3 is the ability to generate driving directions on the map.

Other	GoMap	Options
In addition to address, latitude, and longitude, you can set many other options when
creating a new map. You should incorporate each option into the object literal that’s
passed to the goMap() function. For example, to center the map at a longitude and
latitude of 45/–122, and set the map so that’s zoomed in to show details you’d call the
goMap function like this:

$('#map').goMap(
{
 latitude : 45,
 longitude : -122,
 zoom : 15
}); // end goMap

In other words, the options you’re reading about in this section are just passed in as
part of the object literal.

Here are a few options you can set.

• Control the scale of the map. Sometimes you want your map focused on the
finest details, such as a street-level map. Other times, you might want to have
a broader picture and see an entire city or state on the screen. You can control
how zoomed-in the map is by providing a number for the zoom option. A set-
ting of 0 is completely zoomed out (that is, a map of the entire globe), while
each number above 0 represents greater zoom. As a general rule, 15 is a good
setting if you want to see the names of each street, while 13 is good for more of
a bird’s-eye view. The upper limit (greatest amount of zoom) depends on how
detailed a map Google has for the area, and varies anywhere from 17 to 23. Set
the option like this:
zoom:15

• Specify the type of map you’d like. Normally, GoMap displays what’s called a
hybrid map—a satellite photo with street and landmark names superimposed
on top. However, you may want your map to be a plain road map, only a satel-
lite image, or a terrain map that shows vegetation, elevation changes, and so on.

392 javascript & jquery: the missing manual

Adding Google Maps
to Your Site

Set the maptype option to one of the following values: ‘HYBRID’, ‘ROADMAP’,
‘SATELLITE’, or ‘TERRAIN’. For example:
maptype: 'TERRAIN'

• Add a scale marker. It’s common on printed maps to have some kind of scale
listed on the map: 1" equals 1 mile, for example. A Google Map can also have a
scale marker (see Figure 12-3). To add a small visual scale marker to the lower
left of the map, set scaleControl to true:
scaleControl : true

If you don’t want to see the scale marker, you don’t need to do anything—goMap
normally doesn’t display a scale.

Figure 12-3:
Beyond the map itself, a
Google Map offers various
controls and information
markers that make it
possible to zoom into a
map, move the map within
the window, determine
the scale of the map, and
pinpoint exact locations.

Scale marker

Navigation controls Information window Map type controller

Marker

• Remove navigation controls. If you want to show a map without the zoom in/
zoom out or pan controls, you can set the navigationControl item to false like this:
navigationControl : false

That line hides those controls from visitors, but they can still use the scroll wheel
or double-click to zoom in. If you really want to keep a visitor from navigating
the map, then add this to the object literal passed to the goMap() function:
navigationControl: false,
scrollwheel: false,
disableDoubleClickZoom: true,

GoMap doesn’t let you turn off dragging, however, so visitors could still drag
around the map even if you prevent them from zooming in or out.

• Map Type Controls. You can present a Google Map as a road map, a satellite
image, a hybrid of the two, or a map with terrain details like elevation. Normally
a map includes controls to switch between the different types of maps. You can
hide that control by setting the mapTypeControl item to false like this:

393chapter 12: flickr and google maps

Adding Google Maps
to Your Site

mapTypeControl : false

If you do like the map type buttons, you can control the style of those buttons
and their position. You give the mapTypeControlOptions item an object literal
composed of a position setting and a style. The possible values for placing the
map type controls on the page are TOP, TOP_LEFT, TOP_RIGHT, BOTTOM,
BOTTOM_LEFT, BOTTOM_RIGHT, LEFT, RIGHT; the values for the style of
control are DEFAULT, DROPDOWN_MENU, HORIZONTAL_BAR. For exam-
ple, say you want to use the drop-down menu style and place it in the bottom
right of the map. You’d pass this into the object literal for the goMap() function:
mapTypeControlOptions: {
 position: 'BOTTOM_RIGHT',
 style: 'DROPDOWN_MENU'
}

Adding	Markers
To highlight a point on a map, you can add a red pushpin marker like the one in
Figure 12-3. These markers are a great way to mark the location of your business or
a point of interest on the map. To provide even more information for the marker, you
can also add a pop-up bubble with HTML (Figure 12-3). The GoMap plug-in makes
adding these details easy.

GoMap gives you a couple of ways to add a marker: You can create a marker and a
map at the same time. Or, you can add a map to a page and then add one or more
markers to the map. This second approach gives you the ability to control a marker
dynamically—for example, add a marker when a visitor clicks a button on the page.

The first approach involves calling the goMap() function and passing an object
literal with a markers item. Here’s an example:

$('#map').goMap({
 markers : [
 {
 latitude : 45.53940,
 longitude : -122.59025,
 title : 'Marker 1'
 }
]
}); // end goMap

The markers property creates one or more markers on the map. It’s an array, which is
like a grocery list containing one or more items (page 59). To create an array named
arrayItems containing three strings, you’d write this:

var arrayItems = ['item1', 'item2', 'item3'];

The markers item is an array like this as well, but instead of containing strings, it
contains object literals (page 145). In other words, one marker is an object literal:

{
 latitude : 45.53940,
 longitude : -122.59025,
 title : 'Marker 1'
}

394 javascript & jquery: the missing manual

Adding Google Maps
to Your Site

This code represents one marker and, at its most basic, is composed of a latitude,
longitude, and title for the marker (the title is the text that appears when a visitor
mouses over the marker).

By adding additional object literals to the array, you can add more markers to the
map. For example, here’s the code for adding three markers:

$('#map').goMap({
 markers : [
 {
 latitude : 45.53940,
 longitude : -122.59025,
 title : 'Marker 1'
 },
 {
 latitude : 45.53821,
 longitude : -122.59796,
 title : 'Marker 2'
 },
 {
 latitude : 45.53936,
 longitude :-122.58159,
 title : 'Marker 3'
 }
]
}); // end goMap

When you create a map this way, you can still pass the same options described
above to the goMap() function. For example, to create a road map with one marker,
zoomed into level 15, with a scale marker on it, you could write code like this (note
that the options go outside the markers array):

$('#map').goMap({
 markers : [
 {
 latitude : 45.53940,
 longitude : -122.59025,
 title : 'Marker 1'
 }
],
 zoom : 15,
 maptype : 'ROADMAP',
 scaleControl : true
}); // end goMap

You can also use an address to set a marker, instead of latitude and longitude, like
this:

$('#map').goMap({
 markers : [
 {
 address : '2200 NE 71st Ave Portland, OR, USA',
 title : 'Marker 1'
 }
],
 zoom : 15,
}); // end goMap

395chapter 12: flickr and google maps

Adding Google Maps
to Your Site

You can also add a marker after the map is created. This technique is handy if you
don’t want a marker in the center of the map: For example, you might want to have
a map of a park, and highlight various points of interest in the park with markers.
You’ll want the park centered in the map, but don’t want a marker in the center
(which is what happens when you create markers and maps at the same time as
described on page 395).

You also might want to add markers dynamically—maybe in response to something
a user clicks. For instance, using the park map example, you might have a button that
says “Show me all the slides in the park.” Clicking that button makes markers appear
highlighting all the slides in the park.

Following this approach, you start by first adding a map, and then calling a special
function of the GoMap plug-in—createMarker(). For example, to create a map and
then add a marker, you can write code like this:

$('#map').goMap(
{
 latitude : 45,
 longitude : -122,
 zoom : 15
}); // end goMap
$.goMap.createMarker({
 latitude : 45.53940,
 longitude : -122.59025,
 title : 'Marker 1'
});

Notice that the GoMap plug-in isn’t attached to a jQuery selection to add a marker
in this way. In other words, it’s $.goMap.createMarker(), instead of $(‘#map’).goMap
.createMarker(). You can add only one marker at a time like this, so you need to call
this function multiple times to add more than one marker. A good approach is to
define all of your markers as an array and then use jQuery’s $.each() function to loop
through the array and apply the createMarker() function. Here’s an example:

var markers = [
 {
 latitude : 45.53940,
 longitude : -122.59025,
 title : 'Marker 1'
 },
 {
 latitude : 45.53821,
 longitude : -122.59796,
 title : 'Marker 2'
 },
 {
 latitude : 45.53936,
 longitude :-122.58159,
 title : 'Marker 3'
 }
]
$('#map').goMap(
{

396 javascript & jquery: the missing manual

Adding Google Maps
to Your Site

 latitude : 45,
 longitude : -122,
 zoom : 15
}); // end goMap
$.each(markers,function(i,marker) {
 $.goMap.createMarker(marker);
}); // end each

In addition, you might want to remove markers (for example, a button that says
Hide Markers). GoMap includes a clearMarkers() function. You use it like the create-
Marker() function; that is, you attach it to the jQuery object instead of a selection,
like this:

$.goMap.clearMarkers();

So say you have a button on the page with the ID of removeMarkers. You can attach
a click handler to it that will remove the markers from the page:

$('#removeMarkers').click(function() {
 $.goMap.clearMarkers();
}); // end click

If you wish to remove just a particular marker, you need to first add an ID to a
marker, then call GoMap’s removeMarker function. For example, the code below
creates a new map (lines 1–13), and then adds a click event to a page element with
the ID of remove.

1 $('#map').goMap({
2 markers : [
3 {
4 latitude : 45.53940,
5 longitude : -122.59025,
6 title : 'Marker 1',
7 id : 'marker1'
8 }
9],

10 zoom : 15,
11 maptype : 'ROADMAP',
12 scaleControl : true
13 }); // end goMap
14 $('#remove').click(function() {
15 $.goMap.removeMarker('marker1');
16 });

The important part in creating the marker is line 7—id : ‘marker1’—which assigns
an name to that marker. Once a marker has an ID, you can identify it and remove it
using the removeMarker function (line 15). GoMap also provides a showHideMarker()
function, which toggles a marker from visible to invisible and vice versa. For ex-
ample, you could rewrite lines 14–16 so each time the page element is clicked, the
particular marker is either hidden or shown, like this:

$('#remove').click(function() {
 $.goMap.showHideMarker('marker1');
});

397chapter 12: flickr and google maps

Adding Google Maps
to Your Site

Adding	Information	Windows	to	Markers
You can also add a pop-up bubble (called an information window) to each marker.
To do that, add another item to the object literal for each marker named html con-
taining yet another object literal with the property’s content and popup. For example:

$('#map').goMap({
 markers : [
 {
 address : '2200 NE 71st Ave Portland, OR, USA',
 title : 'Marker 1',
 html : {
 content : '<p>A fun place to play</p>',
 popup : true
 }
 }
],
 zoom : 15,
}); // end goMap

The content property sets the text you’d like to appear in the pop-up bubble, which
you can do using regular HTML tags and text. The popup property specifies whether
the pop-up bubble is visible when the map appears (set the property to true as in
the above example) or whether a visitor needs to click the marker before seeing the
information bubble (set popup to false like this—popup : false).

You can add any HTML you wish, such as tables, images, and bulleted lists. You can
add quite a bit of content to these information bubbles—they automatically resize.

Tip: To style the HTML inside the HTML bubble, you can use a descendent selector. For example, if you
used the name map for the ID of the <div> containing the map (see step 3 on page 389), you could cre-
ate a descendent selector #map p to format the look of <p> tags inside the bubble.

GoMap	Tutorial
In this tutorial, you’ll go through the steps necessary to add the GoMap plug-in to a
web page. You’ll also add programming so that visitors can request driving directions.

Note: See the note on page 29 for information on how to download the tutorial files.

1. In a text editor, open the file map.html in the chapter12 folder.
Before you start adding any JavaScript to this page, you’ll modify the HTML by
adding an empty <div> to hold the map.

2. Locate the <h1> tag in the body of the page (<h1 class=“shadowLine”>Google
Maps</h1>). Click inside the empty line directly below this tag and add:
<div id="map"></div>

398 javascript & jquery: the missing manual

Adding Google Maps
to Your Site

You’ve just created a placeholder, where the GoMap plug-in will eventually add
a Google Map.
Next, you’ll add a CSS style to set the height and width of the map.

3. At the top of the file is an internal style sheet; add a CSS rule, just after the
opening <style> tag, type:
#map {
 height:400px;
 width:760px;
}

At this point, the map area is 500 pixels square. Now it’s time to add some
JavaScript.

4. Click in the empty line just above the closing </head> tag and type:
<script src="http://maps.google.com/maps/api/js?sensor=false"></script>
<script src="../_js/jquery-1.6.3.min.js"></script>
<script src="../_js/jquery.gomap-1.3.2.min.js"></script>

The first <script> tag loads a JavaScript file from Google.com containing the
code needed to talk to the Google Maps service. The second <script> tag loads
jQuery, while the third one loads the GoMap plug-in file. Now, you’re ready to
create the map.

5. Add one additional <script> tag below the ones you added in step 4, and in-
clude jQuery’s $(document).ready() function:
<script>
$(document).ready(function() {

}); // end ready
</script>

Now, you just need to apply the goMap() function to the empty <div> you cre-
ated in step 2.

6. Inside the $(document).ready() function, add the following code:
$('#map').goMap({
 latitude : 45.53940,
 longitude : -122.59025
}); // end goMap

This code places a map inside the div you added in step 2, displaying a specific
longitude and latitude as the center point on the map. (Feel free to change these
values if you want to display a map with a different location.)

7. Save the file and preview it in a web browser.
Provided you’re connected to the Internet (so the browser can contact Google
.com), you’ll see a 760×400 pixel map.
Let’s zoom in a bit more on the map.

399chapter 12: flickr and google maps

Adding Google Maps
to Your Site

8. Edit the script by adding a comma after the longitude option and inserting a
zoom setting (changes are in bold):
$('#map').goMap({
 latitude : 45.53940,
 longitude : -122.59025,
 zoom : 16
}); // end goMap

You can zoom completely out (0), or in to street level (17). Feel free to save the
page and preview the changes in a web browser. Next you’ll add a scale marker
so visitors can get some sense of the distances on the map.

9. Edit the script again. This time add a comma after the zoom option and insert
another line of code:
$('#map').goMap({
 latitude : 45.53940,
 longitude : -122.59025,
 zoom : 16,
 scaleControl : true
}); // end goMap

This line adds a small scale marker in the bottom left of the map, Finally, you’ll
change the type of map (normally GoMap displays a hybrid—satellite imagery
with streets and street names) to just a Satellite photo.

10. Edit the goMaps() function one last time by adding one last option:
$('#map').goMap({
 latitude : 45.53940,
 longitude : -122.59025,
 zoom : 16,
 scaleControl : true,
 maptype : 'SATELLITE'
}); // end goMap

The basic map is now in place. To highlight a location on the map, you’ll add a
red pushpin marker.

11. After the goMap() function you added earlier, type:
$.goMap.createMarker({
 latitude : 45.53743,
 longitude : -122.59473,
 title : 'hole1'
}); // end createMarker

This sets up a marker at the same location as the center of the map. You can
provide different longitude and latitude values, of course, to add a marker else-
where on the map.
Lastly, you’ll add an information window for this marker.

400 javascript & jquery: the missing manual

Adding Google Maps
to Your Site

12. Edit the code you typed in the last step to add an information window
(changes in bold):
$.goMap.createMarker({
 latitude : 45.53743,
 longitude : -122.59473,
 title : 'hole1' ,
 html : {
 content : '<h2>Hole 1</h2><p>Par 4, 346 yards</p>',
 popup : true
 }
}); // end createMarker

This code adds a pop-up window with some HTML in it. Save the page and
give it one final check in a web browser. You’ll find a completed version of the
tutorial file—complete_map.html—in the chapter12 folder.

5
Part Five: Tips, Tricks, and
Troubleshooting
Chapter	13:	Getting	the	Most	from	jQuery

Chapter	14:	Going	Further	with	Java	Script

Chapter	15:	Troubleshooting	and	Debugging

403

chapter
13

Getting the Most from
jQuery

jQuery greatly simplifies JavaScript programming, and provides web designers
with a tool that lets them add sophisticated interactivity quickly and easily. But
jQuery isn’t always simple, and you need a certain amount of knowledge to use it

to its full extent. In this chapter, you’ll learn how to take jQuery further: how to use
the jQuery documentation and how to take advantage of prepackaged interactivity
with plug-ins, plus some useful tips and tricks for working with jQuery.

Useful jQuery Tips and Information
jQuery makes programming easier, but on top of that, there are ways you can make
programming jQuery easier. Here are a few bits of information that give you insight
into jQuery so you can get the most from it.

$()	Is	the	Same	as	jQuery()
In the many articles and blog posts on jQuery out there on the Web, you may en-
counter code like this:

jQuery('p').css('color','#F03');

While you’re familiar with $(‘p’), which selects all the <p> tags on a page, you may
be wondering about this jQuery() function. Actually, they are one and the same. The
code above could also be written like this:

$('p').css('color','#F03');

$() is an alias for jQuery(), and the two are interchangeable. John Resig, the creator of
jQuery, realized that programmers would be using the main jQuery function a LOT,
so rather than force people to type jQuery() over and over, he decided the shorter $()
would be a good substitute.

404 javascript & jquery: the missing manual

Useful jQuery Tips
and Information

In practice, you can use either jQuery() or $(); it’s your choice. However, since $() is
faster to type, you’ll probably want to stick with it (as most programmers do).

Note: Another JavaScript library named Prototype (www.prototypejs.org) also uses $(). If you happen
to also use Prototype on your site, you might want to use the jQuery() method. In addition, jQuery
provides a special function to deal with this situation, named .noConflict(). You can read about it at http://
api.jquery.com/jQuery.noConflict/.

Saving	Selections	Into	Variables
Every time you make a selection of page elements using $()—$(‘#tooltip’), for ex-
ample—you’re calling the jQuery function. And each time you do that, a visitor’s
browser has to run a bunch of code. This can often slow your programs down un-
necessarily. For example, say you wanted to apply several jQuery functions to a se-
lection like this:

$('#tooltip').html('<p>An aardvark</p>');
$('#tooltip').fadeIn(250);
$('#tooltip').animate({left : 100px},250);

This code selects an element with an ID of tooltip and inserts a <p> tag into it. It then
selects the element again and fades it into view. Finally, it selects the element a third
time and then animates its left property to 100px. Each of those selections—each
$(‘#tooltip’)—runs the jQuery function. Since these three lines of code affect the
same element, you really only need to select it once.

One approach (discussed earlier in the book on page 137) is to use jQuery’s chaining
abilities. You select the elements then add one function after another to it like this:

$('#tooltip').html('<p>An aardvark</p>').fadeIn(250).animate({left :
100px},250);

But sometimes chaining gets unwieldy and hard to read. Another option is to only
run the jQuery function a single time, and store its result in a variable that you reuse.
Here’s how you could do that with the above code:

1 var tooltip = $('#tooltip')
2 tooltip.html('<p>An aardvark</p>');
3 tooltip.fadeIn(250);
4 tooltip.animate({left : 100px},250);

Line 1 runs the jQuery function, creating a selection of an element with the ID of
tooltip and stores it into a variable named tooltip. Once the selection is made and
stored, you don’t need to do it again. You can simply use that variable (which now
contains a jQuery selection) and run jQuery functions on it.

When using this approach, many programmers like to add a $ before the variable
name, which helps remind them that the variable is storing a jQuery selection as op-
posed to other data types like strings, variables, arrays, or object literals. For example:

var $tooltip = $('#tooltip');

405chapter 13: getting the most from jquery

Useful jQuery Tips
and Information

Storing a selection into a variable is also very common when using events. As you’ll
recall from page 149, when you are inside an event function, the variable $(this) re-
fers to the element the event is applied to. However, each time you use $(this) you are
calling the jQuery function, so repeated use of $(this) inside an event function just
wastes computer power. Instead, you can store $(this) into a variable at the begin-
ning of the event function and use it repeatedly without needing to continually call
the jQuery function:

$('a').click(function() {
 var $this = $(this); // store a reference to the <a> tag
 $this.css('outline','2px solid red');
 var href = $this.attr('href');
 window.open(href);
 return false;
}); // end click

Adding	Content	as	Few	Times	as	Possible
In Chapter 4, you learned about some jQuery functions that let you add content to
page elements: The .text() function (page 138) for example, lets you replace the text
inside an element, and the .html() function (page 138) lets you replace the HTML
inside of an element. For example, if you wished to insert an error message inside a
span tag with the ID of passwordError, you could write this code:

$('#passwordError').text('Passwords must by at least 7 characters long.');

Other functions let you add content after an element (append(); discussed on page
139) or before an element (prepend(); discussed on page 139).

Adding and changing content lets you add error messages, pop-up tooltips (page
326), insert pull quotes (page 150), but it does require a lot from a browser. Each
time you add content, the browser needs to do a lot of work—you’re basically chang-
ing the DOM (page 127) and when that happens, browsers do a lot of behind-
the-scenes work. Changing the content a lot of times can significantly affect the
performance of a web page.

It’s not the amount of content that matters—it’s the number of times you change the
page that affects performance. For example, say you wanted to create a tooltip effect:
When someone mouses over a box, for example, a div appears with some additional
content. To do this, you need to add the box and the additional content to the page.
This is one approach to add that div:

1 // add div to end of element
2 $('#elemForTooltip').append('<div id="tooltip"></div');
3 // add headline to tooltip
4 $('#tooltip').append('<h2>The tooltip title</h2>');
5 // add contents
6 $('#tooltip').append('<p>The tooltip contents here</p>');

The code above will work just fine: Line 2 adds a div to the element the visitor will
mouse over; line 3 adds a headline to the tooltip box; and line 4 adds a paragraph
to the tooltip. However, the DOM is modified three times in the process with three

406 javascript & jquery: the missing manual

Useful jQuery Tips
and Information

different append operations. All of this processing is actually quite taxing on a web
browser, and reducing the number of times you have to modify the DOM can sig-
nificantly improve the performance of a page.

In this example, you can reduce the number of append operations to just one by
building the entire tooltip HTML, storing it in a variable, and then appending that
variable’s contents to the page, like this:

1 var tooltip = '<div id="tooltip"><h2>The tooltip title</h2> ↵
<p>The tooltip contents here</p></div';

2 $('#elemForTooltip').append(tooltip);

Note: The ↵ symbol at the end of a line of code indicates that the next line should really be typed as part
of the first line. But since a really long line of JavaScript code won’t fit on this book’s page, it’s broken up
over two lines.

In this code, line 1 creates a variable containing all of the HTML for the tooltip, and
line 2 appends that HTML to a page element. There’s only one append operation,
and depending upon which browser the visitor views the page in, this code can be
up to 20 times faster than using the three .append() functions.

The bottom line is that if you want to inject a chunk of HTML into a spot on the
page, do it in one single operation rather than add the HTML in parts using multiple
inserts.

Optimizing	Your	Selectors
jQuery’s flexibility means you have many ways to achieve the same goal. For ex-
ample, you can select a page element in a number of ways; for example, you can use
any CSS selector, or refine a jQuery selection using the DOM Traversal functions
discussed on page 413. However, the following techniques will make your selections
faster and your JavaScript programs more efficient.

• Use ID selectors if at all possible. The fastest way to select a page element is
to use an ID selector. Browsers from the dawn of JavaScript have provided a
method for selecting elements with IDs, and it’s still the fastest way. If you’re
worried about performance, then you might want to slap an ID on each element
that you plan on selecting rather than depending upon other methods like a
descendent selector.

• Use IDs first, as part of a descendent selector. The problem with using just an
ID selector is that you only ever retrieve a single element. What if you need to
retrieve multiple elements like all the <a> tags inside a div, or the paragraphs on
a page? If your page is structured in such a way that all the elements you wish
to select are within an element with an ID, then use a descendent selector that
includes the ID first. For example, say you want to select all the <a> tags on a
page. It just so happens that all of those tags are also inside a div tag with an ID
of main. It’s faster to use this selector:

407chapter 13: getting the most from jquery

Using the jQuery
Docs

$('#main a')

than this selector:
$('a')

• Use the .find() function. jQuery includes a function for finding elements within
a selection. It works kind of like a descendent selector in that it locates tags
inside of other tags. You’ll read more about this function on page 414, but in a
nutshell, you start with a jQuery selection, slap on .find(), and pass a selector to
it. In other words, you could write $(‘#main a’) like this:
$('#main').find('a');

In fact, in some situations using .find() instead of a descendent selector is over
two times as fast!

Note: You can try a speed test for the .find() function at http://jsperf.com/sawmac-selector-test.

• Avoid too much specificity. You may be used to using CSS’s specificity rules
to create CSS styles that target particular elements on a page. A rule like #main
.sidebar .note ul.nav li a is very specific, but when you run it through the jQuery
function, it can also perform slowly. If possible, either use a descendent selec-
tor that’s shorter and more refined—$(‘.sidebar .nav a’), for example—or use
the .find() function mentioned in the previous point: $(‘#main’).find(‘.sidebar’).
find(‘.nav a’).

Note: If you’re interested in learning about other ways to improve jQuery’s performance, check out this
presentation: http://addyosmani.com/jqprovenperformance/ and http://jqfundamentals.com/#chapter-9.
For many good tips and tricks for working with jQuery, visit this blog post http://tutorialzine.com/2011/06/15-
powerful-jquery-tips-and-tricks-for-developers/.

Using the jQuery Docs
The jQuery website provides very detailed documentation for jQuery at http://docs
.jquery.com/ (see Figure 13-1). You’ll find useful links for how to get started with
jQuery, where to seek help, tutorials, and more, but the most important section of
the site deals with the jQuery API. API stands for Application Programming Inter-
face, and simply means the set of functions that jQuery lets you use, like the event
handler functions you read about in Chapter 5 (.click(), .hover(), and so on), the CSS
functions you learned about in Chapter 4 (.css(), .addClass(), and .removeClass()),
and most importantly, the basic jQuery function itself—$()—which lets you select
elements on a page.

408 javascript & jquery: the missing manual

Using the jQuery
Docs

Figure 13-1:
The main jQuery
docs page contains
links to lots of useful
information, but the
ones that will help
you figure out all of
the functions jQuery
offers are listed under
the API heading in
the main area of the
page (outlined on
right) or on the left
sidebar (outlined on
left). You’ll find the
left sidebar is avail-
able when you visit
other pages.

Figure 13-1 highlights the main categories of the API. Click one of the categories
to jump to a page listing functions related to that aspect of jQuery. The main cat-
egories are:

• jQuery Core (http://api.jquery.com/category/core/). Here, you’ll find informa-
tion on just a handful of functions, most of which are advanced functions that
you might never need to access. You will find the main jQuery() function, which
is the heart of jQuery. Visiting its page (http://api.jquery.com/jQuery/) will give
you in-depth information on the jQuery() function.

Note: You’ve learned about the $() function and how to use it to select a page element—$(‘p’), for
example. That same function also goes by the name jQuery(). That is, $() is an alias for a function name
jQuery(). The two are interchangeable, so you may see code in a tutorial or in a book that looks like this:

jQuery('p').css('color','#F03');

That is functionally equivalent to:

$('p').css('color','#F03');

409chapter 13: getting the most from jquery

Using the jQuery
Docs

• Selectors (http://api.jquery.com/category/selectors/) provides access to some of
the most helpful jQuery functions. This page is worth visiting often since it
lists the many different ways to use jQuery to select page elements. You learned
about many of these in Chapter 4, but you’ll find even more ways when you visit
this section of the jQuery documentation.

• Attributes (http://api.jquery.com/category/attributes/). Visit this page to find the
various jQuery functions that get and set attributes of HTML elements such as
adding a class to a tag, finding or setting the value of an attribute (like the href
attribute on a <a> tag), or getting the value of a form element.

Note: You’ll often find the same function listed in more than one section of the jQuery documentation
site. For example, the .val() function used to read and set the value of a form field is listed both under the
Attributes and the Forms categories of the site.

• Traversing (http://api.jquery.com/category/traversing/) refers to functions used
to manipulate a set of page elements. For example, the .find() function lets you
find an element inside a jQuery selection: This is handy when you want to select
a page element (a tag for example), perform an operation on it (like add a
class, or fade it into view), and then find another element inside that page ele-
ment to do something else (for example, find an tag inside the original
tag). jQuery provides lots of functions for traversing HTML elements and you’ll
read about some of them later in this chapter.

• Manipulation (http://api.jquery.com/category/manipulation/). Whenever you
want to add or remove something from a page, you need to manipulate the
page’s DOM (Document Object Model [see page 127]). This page lists the many
functions available for changing a page, including the ones you read about in
Chapter 4 (page 138) like .html() to add HTML to a page, .text() to add text
to a page and so on. This category of functions is very important, since a lot
of JavaScript programming is about dynamically changing the content and ap-
pearance of a web page.

• The CSS page (http://api.jquery.com/category/css/) lists jQuery functions used
for reading or setting CSS-related properties on elements including adding or
removing classes, directly setting CSS properties, and controlling or reading
the height, width, and position of an element. You’ll learn about some of these
functions on page 143.

• Events (http://api.jquery.com/category/events/). In Chapter 5, you learned how
to use jQuery to respond to user interaction like the mouse moving over a link,
or the visitor clicking a button on the page. You’ll find a list of jQuery’s many
event-related functions on this page. On page 427, you’ll learn about some ad-
vanced event functions.

• The Effects page (http://api.jquery.com/category/effects/) provides access to in-
formation on jQuery’s effects-related functions like the .slideDown(), .fadeIn(),
and .animate() functions you learned about in Chapter 6.

410 javascript & jquery: the missing manual

Using the jQuery
Docs

• The Ajax category (http://api.jquery.com/category/ajax/) lists functions related
to dynamically updating a page based on information sent to or received from a
web server. You’ll learn about Ajax in Part 4 of this book.

• Utilities (http://api.jquery.com/category/utilities/). jQuery also provides a hand-
ful of functions dedicated to simplifying common programming tasks like find-
ing an element inside an array (page 59), acting on each item inside an array or
object (the $.each() function discussed on page 147), and a bunch of other geeky
niceties. You may not need any of these functions at this point in your program-
ming career (they don’t really tap into any cool effects, or help you update the
content or appearance of a page), but as you get more advanced, it’s worth visit-
ing this page on the jQuery documentation site.

Strangely, when you visit one of the category pages (like Ajax or Selectors), the left
sidebar adds more categories of functions for the jQuery API that aren’t listed on the
home page:

• The Data category (http://api.jquery.com/category/data/) lists functions related
to adding data to page elements. jQuery provides a .data() function to add data
to an element—think of it as a way to add name/value pairs to any page ele-
ment, kind of like a mini-database. This and the other data-related functions
can come in handy when working on a web application where you need to store
and track data. For an understandable introduction to using these data func-
tions, check out http://tutorialzine.com/2010/11/jquery-data-method/.

• Deferred Object (http://api.jquery.com/category/deferred-object/). You don’t
need to look much further than the introduction to this category (which ex-
plains that a deferred object “is a chainable utility object that can register multi-
ple callbacks into callback queues, invoke callback queues, and relay the success
or failure state of any synchronous or asynchronous function”) to understand
that jQuery’s Deferred Object is a complex beast. Basically, it helps with queuing
up functions to control the order in which they run. If you want to learn more,
visit the category page of the jQuery docs site.

• Dimensions (http://api.jquery.com/category/dimensions/) refers to functions
used to determine the width and height of objects. These functions are also
listed under the CSS category mentioned above.

• The Forms category (http://api.jquery.com/category/forms/) lists functions related
to—drum-roll please—forms. It mainly lists events used with form elements,
but also includes the .val() function for reading or setting the value of a form
field, and a couple of functions to make it easy to submit a form using Ajax (see
section 4).

411chapter 13: getting the most from jquery

Using the jQuery
Docs

• Internals (http://api.jquery.com/category/internals/) are a handful of functions
of various usefulness. The .jquery property, for example, returns the version of
jQuery in use on the page:
// open alert box with version number
alert($().jquery); // 1.6.2, for example

You can lead a long, happy life without using any of the functions here.
• The Offset category page (http://api.jquery.com/category/offset/) lists functions

related to determining the position of an object relative to the screen or to its
parent element. You’ll use these functions when setting or getting the position
of an element on the page.

Reading	a	Page	on	the	jQuery	Docs	Site
Each jQuery function has its own page, documenting what it does and how it works.
Figure 13-2 shows part of the page explaining jQuery’s .css() function. The page
lists the functions name (.css() in this case), as well as listing the category and sub-
categories the function falls under. You can click on the category and subcategory
links to jump up to a page listing all functions that fit that category.

In some cases, a function serves double- or even triple-duty and acts differently
based on the type and number of arguments you provide it. In that case, you’ll see
the function listed in several different ways under the function title. For example,
in Figure 13-2, you’ll see that the .css() function can be used in two different ways
(numbers 1 and 2 in the figure).

The first way, #1, is listed as css(propertyName). Here, propertyName indicates that
you pass one argument to the function, which should be a CSS property name.
jQuery then returns the value of that property for the specified element (notice Re-
turns: String on the right side of the dark bar in the middle of the figure). The infor-
mation listed on the page then lets you know that you pass one argument and receive
a string in return. For example, say you want to determine the width of a <div> tag
with the ID of tooltip; you can use this code:

var tipWidth = $('#tooltip').css('width'); // get the width value

In the code above, ‘width’ is passed to the function, and a string value is returned.
(However, in this case since it’s a width, the string will actually be the number of
pixels wide; the element is—‘300’, for example.)

412 javascript & jquery: the missing manual

Using the jQuery
Docs

Figure 13-2:
The docs page for each jQuery
function lists all the different ways
you can use a function. In this
case, listed under Contents: you’ll
see that you can pass the .css()
function either a single argument
(#1) or two arguments (#2).
The function behaves differently
depending on which of those two
routes you go. By clicking the
small blue down-pointing arrow
(circled), you can jump directly
to the spot on the page that de-
scribes that use of the function.

1

2

Function name Category and sub-categories

A second way to use the .css() function is listed (#2) as css(propertyName, value),
indicating that you pass the function two arguments—the name of a CSS property
and a value. Used this way, the .css() function sets the CSS property for the element.
For example, if you wanted to set the width of a <div> tag with the ID of tooltip, you
would pass width as the first argument, and the value you wish for the width as the
second like this:

$('#tooltip').css('width',300); // set div to 300px wide

The documentation also lists two other ways to use the .css() function to set CSS
properties:

• .css(propertyName, function(index,value)) indicates that you can set a CSS
property using a function to dynamically generate a value. This is handy when
you have a collection of page elements and you want to set slightly different
values for each; for example, a series of divs that you wish to set the left property
on to position, but you want each div to be positioned next to each other at a
different left position.

• .css(map) is described on page 143, and means that you can pass an object lit-
eral in order to set several CSS properties and values in one step.

The important thing to understand is that the same jQuery function can and of-
ten does take different arguments and does different things. The .css() function, for
example, can both retrieve a CSS value and set a CSS value. You’ll frequently find

413chapter 13: getting the most from jquery

Traversing the DOM

jQuery functions working in this way as both “getters” (that is, they retrieve infor-
mation about an element) and “setters” (that is, they set the value of a particular
property for an element).

The docs page will describe each use of the function and usually provides working
examples of how the function works. The jQuery docs are well-maintained, and as
far as technical documentation goes, pretty easy to read and understand. You should
spend some time visiting these pages and especially reading up on the functions you
use most often.

Traversing the DOM
You’ve learned how to select page elements using jQuery and basic CSS syntax: $(‘p’),
for example, selects all of the paragraphs on a page. Once you select elements, you
can do stuff to them, such as add or remove a class, change a CSS property, or make
the elements disappear. But sometimes you want to find other page elements in rela-
tionship to your original selection. In JavaScript-speak, this is called Traversing the
DOM (Document Object Model).

Traversing the DOM happens frequently when you attach an event to an element but
then want to do something to another element. For example, say you have a <div>
tag with an ID of gallery; the div contains a series of thumbnail images. When a visi-
tor clicks the div, you want the thumbnails to do something: shrink, grow, shake, or
something like that. The event is attached to the <div> tag like this:

$('#gallery').click(function() {

}); // end click

Inside the function, you need to add the programming code to animate the images.
So, although the user clicks the div, you want do something to the images. In the
code above, you’ve merely selected the <div> tag, and inside the function $(this) will
refer to that div (if that’s news to you, turn to page 149 for a refresher on what $(this)
means). So, although the <div> tag is the selected element inside the click function,
you need to find the images inside that div. Fortunately, jQuery provides just such a
solution: the .find() function. Its purpose is to generate a new selection of page ele-
ments by searching inside the current selection for other tags that match a given se-
lector. So you can select the images inside the div by adding the bolded code below:

$('#gallery').click(function() {
 $(this).find('img');
}); // end click

The $(this).find(‘img’) creates a new selection of elements; $(this) refers to the div,
then .find(‘img’) looks for every image inside that div. Of course, this code doesn’t do
anything to the new selection, but you could add any of the effects you learned about
in the last chapter. For example, say you want the images to fade out temporarily and
then fade back in. You could use this code:

$('#gallery').click(function() {
 $(this).find('img').fadeTo(500,.3).fadeTo(250,1);
}); // end click

414 javascript & jquery: the missing manual

Traversing the DOM

As you read on page 187, the fadeTo() function takes a duration and an opacity value
as arguments. So this code first fades all of the images to 30% opacity in 500 milli-
seconds, and then fades it back to 100% opacity in 250 milliseconds (see the file find
.html in the chapter07 tutorial folder to see this effect in action).

In fact, traversing the DOM is such a common task that jQuery provides many func-
tions that help you take a selection of elements and then locate other elements in re-
lationship to the first. To better understand how they work, we’ll use a simple chunk
of HTML represented in Figure 13-3: http://api.jquery.com/category/manipulation/.
It’s a <div> tag with an ID of gallery containing four links, each of which is wrapped
around an image.

As discussed on page 127, you can use the relationships of a family to describe the
relationships between tags on a page. For example, in Figure 13-3, the <div> tag is
the parent of the <a> tags, and each <a> tag is the parent of the tag inside it.
Conversely, the <a> tags are children of the <div> tag, and each <a> tag is the sibling
of the other <a> tags. Each tag is the child of the <a> tag that wraps around
them, and since there are no other tags inside each <a>, the tags don’t have
siblings.

Figure 13-3:
When you make a jQuery selection—for example to add an
event handler to an element, such as the <a> tags pictured
here—you’ll often want to act on another tag in relation to
that selection (for example add an outline to the div tag
or alter the img tag). jQuery’s DOM traversing functions
can help.

<div id=”gallery”>
<a>

<a>

<a>

<a>

Here are a few jQuery’s most useful DOM traversing functions:

• .find(). Finds particular elements inside the current selection. You start with a
jQuery selection, add .find() and pass it a CSS selector like this:
$('#gallery').find('img')

This code finds all of the images inside the gallery div. Of course, you could
achieve the same goals with a descendent selector like this $(‘#gallery img’).
As mentioned above, you’re more likely to use .find() in a situation where you
already have a selection that you’ve done something too—like attach a click
event—to create a new selection to act on.

415chapter 13: getting the most from jquery

Traversing the DOM

You use .find() to select a descendent (a tag inside another tag) of the current
selection. So in the example pictured in Figure 13-3, you could use .find() on a
selection including the div to select either the <a> tags or the tags.

Note: See the previous page to read about the huge performance benefits .find() offers. It’s generally a
faster way to select elements than using a descendent selector.

• .children() is similar to .find(). It also accepts a selector as an argument, but it
limits its selection to immediate children of the current selection. For example,
say you had a div tag that contains a series of other divs. When you click on the
main div, it reveals previously hidden divs, and adds a red outline around them.
Let’s say you used the .find() function to achieve this goal like this:
$('#mainDiv').click(function() {
 $(this).find('div').show().css('outline','red 2px solid');
});

A problem arises if one of the divs inside the main div also has a div tags inside
it. .find(‘div’) locates all div tags, even divs inside other divs. You may end up
with a page that has outlines around all the divs, when what you want is simply
an outline around the immediate child divs of the main div. To solve that di-
lemma, you can rewrite the code above using .children() like this:
$('#mainDiv').click(function() {
 $(this).children('div').show().css('outline','red 2px solid');
});

Now this code finds only the divs that are immediate children of the main div
and avoids any divs that might exist inside the child divs.

• .parent(). Whereas .find() locates elements inside the current element, .parent()
travels up the DOM locating the parent of the current tag. This could come in
handy, for example, if you attach a hover event to the <a> tags pictured in Figure
13-3, but you want to perform an action on the <div> tag (for example, add a
border or background color to the div. In this case, you’d use .parent() to locate
the div and apply an action to it, like this:
$('#gallery a').hover(
 function() {
 // add outline to link
 $(this).css('outline','2px solid red');
 // add background color to div
 $(this).parent().css('backgroundColor','white');
 },
 function() {
 // remove outline from link
 $(this).css('outline','');
 // remove background color from div
 $(this).parent().css('backgroundColor','');

 }
); // end hover

416 javascript & jquery: the missing manual

Traversing the DOM

In this example, hovering over a link adds an outline around that link, then
selects the link’s parent (the div) and applies a background color. Mousing off
the link removes both the outline and background color (see page 171 for more
information on the .hover() event). (See the file parent.html in the chapter13
tutorial folder for an example of this function in action.)

• .closest() finds the nearest ancestor that matches a particular selector. Unlike
.parent(), which finds the immediate parent of the current tag, .closest() accepts
a selector as an argument and finds the nearest ancestor that matches. For ex-
ample, in Figure 13-3, each image is inside a <a> tag; in other words, the <a>
tag is the parent of the image. However, what if you wanted to select the <div>
tag that surrounds the <a> tags (an ancestor further up the HTML chain)? You
could then use .closest() like this:

1 $('#gallery img').click(function() {
2 $(this).css('outline','2px red solid');
3 $(this).closest('div').css('backgroundColor','white');
4 }); // end click

In line 4, $(this) refers to the tag; .closest(‘div’) means find the nearest
ancestor that’s a <div> tag. The closest ancestor is the <a> tag, but since it isn’t
a div, jQuery skips it and finds the next ancestor, and so on and so on until it
locates a <div>.

• .siblings() comes in handy when you wish to select an element that’s at the same
level as the current selection. Say you had the setup pictured in Figure 13-3;
when a visitor clicks a link, you want all the other links to gently fade out and
into view. In this case the event—click—applies to a link tag, but the effect you
wish to perform is to all the other links inside that div. In other words, you start
with a link, but you want to select all that link’s siblings. You could do that like this:

1 $('#gallery a').click(function() {
2 $(this).siblings().fadeTo(500,.3).fadeTo(250,1);
3 }); // end click

In the above code, $(this) refers to the clicked link, so .siblings() selects all of the
other links in that div.

417chapter 13: getting the most from jquery

Traversing the DOM

The .siblings() function also can take an argument—the name of a selector—to
limit the selected siblings to a certain type of tag. For example, say inside the
<div> tag pictured in Figure 13-3, there’s a headline and introductory paragraph
prior to the links. Since the headline and paragraph are both inside the <div>
tag along with all of the <a> tags, they’re also siblings of the <a> tag. In other
words, give the code above, clicking a link would also cause that headline and
paragraph to fade out and back into view. To limit the effect to just other links,
you could rewrite line 2 above to look like the following:
$(this).siblings('a').fadeTo(500,.3).fadeTo(250,1);

The ‘a’ inside siblings(‘a’) limits the selection to just siblings that are also <a>
tags. See the siblings.html file in the chapter13 tutorial folder to see how this
function works.

• .next() finds the next sibling of the current selection. You already saw this func-
tion in action in the One Page FAQ tutorial on page 180. In that tutorial, click-
ing a question opens and then closes a <div> tag containing the answer to that
question. Each question is represented by a <h2> tag, and each answer by a div
tag immediately following that <h2> tag. The headline and div are siblings, but
they are also the siblings of all the other questions and answers on that page. So
when the headline is clicked, you must select the immediate sibling (in other
words, the next sibling). Like .siblings(), .next accepts an optional selector so
that you can limit selection to the next sibling of a particular type. (See the
complete_faq.html file in the chapter05 tutorial folder for an example of .next()
in action.)

• .prev() works just like .next(), except that it selects the immediately preceding
sibling.

Note: For more jQuery functions that let you traverse the DOM, visit http://api.jquery.com/category/
traversing/.

418 javascript & jquery: the missing manual

Traversing the DOM

POWER USERS’ CLINIC

Putting an .end() to DOM Traversal
In order to get the most done while writing the least
amount of code, jQuery lets you chain functions together.
Chaining is discussed on page 137, but in a nutshell it lets
you select some pages elements, do one thing to them,
then do another and another thing to them, simply by add-
ing one function after another. For example, if you wanted
to select all the paragraphs on a page and have them fade
out of view then fade back into view, you could write this
code:

$(‘p’).fadeOut(500).fadeIn(500);

You can chain as many functions together as you’d like
including the DOM Traversal methods discussed above.
For example, you could select a <div> tag, add an outline
around it, and then select all of the <a> tags inside that
<div> and change the color of their text like this:

$('div').css('outline','2px red solid').
find('a').css('color','purple');

Broken into pieces, this means:

1. $(‘div’) selects all <div> tags.

2. .css(‘outline’,’2px red solid’) adds a 2-pixel red out-
line to the div.

3. .find(‘a’) then changes the selection from the div to
all of the <a> tags inside the div.

4. .css(‘color’,’purple’) makes the text of all of the links
(not the div tag) purple.

When adding one of the DOM Traversal functions to the
chain, you alter the selection. For example, in the above
code, jQuery first selects the div, then halfway through
the chain, changes the selection to links inside the div. But
sometimes when you want to return the selection to its
original state. In other words, you want to select one thing,
then select another thing in relation to the first selection,
then return to the first selection. For example, say when a
visitor clicks a div that has an opacity of 50%, you want to
make the div fade to 100% opacity, change the color of the
headline inside the div, add a background color to each p

inside the div. One action—a click—needs to trigger several
actions on different elements of the page. One way to do
this would be like this:

$('div').click(function() {

 $(this).fadeTo(250,1); // fade div in

 $(this).find('h2').css('color','#F30');

 $(this).find('p').
('backgroundColor','#F343FF');

}); // end click

Here’s a case where chaining would be really helpful—in-
stead of calling $(this) three times, you could call it once
and chain together the functions. However, you’d run into
trouble if you tried to chain the functions like this:

$('div').click(function() {

 $(this).fadeTo(250,1)

 .find('h2').css('color','#F30')

 .find('p').('backgroundColor','#F343FF');

}); // end click

This might look right, but the problem occurs after the
.find(‘h2’)—which changes the selection from the div to
the h2 tag inside the div. When the next .find() function
runs—.find(‘p’)—jQuery tries to find p tags inside the h2 tag,
not inside the div. Fortunately, you can use jQuery’s .end()
function to “rewind” a changed selection back to its original
state. In the example above, you can use .end() to return
the selection back to the div, and then find the <p> tags
inside the div like this.

$('div').click(function() {

 $(this).fadeTo(250,1)

 .find('h2').css('color','#F30').end()

 .find('p').('backgroundColor','#F343FF');

}); // end click

Notice the .end() after the .css(‘color’, ‘#F30); this code
returns the jQuery selection back to the div so that the fol-
lowing .find(‘p’) will find all <p> tags inside the div.

419chapter 13: getting the most from jquery

More Functions For
Manipulating HTML

More Functions For Manipulating HTML
You’ll often want to add, remove, and change the HTML of a page dynamically. For
example, when a visitor clicks a submit button on a form, you might want the text
“Send form information. Please wait.” to appear on the screen. Or when a visitor
mouses over a photo, you want a box to appear on top of the photo with a caption
and photo credits. In both cases, you need to add HTML to a page. You learned
about the most common functions in Chapter 4 on page 138. Here’s a quick recap:

• .text() replaces the text inside a selection with selection you pass to the function.
For example:
$('#error').text('You must supply an e-mail address');

• .html() works like .text() but lets you insert HTML instead of just text:
$('#tooltip').html('<h2>Esquif Avalon</h2><p>Designed for canoe camping.</
p>');

• .append() lets you add HTML to the end of an element (for example, at the end
of a div just before the closing </div> tag. This function is perfect for adding
items to the bottom of a list.

• .prepend() lets you add HTML to the beginning of an element (for instance, at
the beginning of a div just after the opening <div> tag).

• .before() adds content before the selection.
• .after() works just like .before(), except that the content is added after the selec-

tion (after its closing tag).

Which of these you use really depends on what your final goal is. Page 124 discussed
how JavaScript is really just about automating the tasks web designers normally per-
form manually: adding HTML and CSS to create a web page. If you’re writing a pro-
gram to add content to a page dynamically—like a tooltip, an error message, a pull
quote, and so on—just imagine what your finished product should look like and the
HTML and CSS required to achieve it.

For example, if you want to create a special message on the page when a visitor
mouses over a button, try building a web page that demonstrates that message with-
out using JavaScript—just build it with CSS and HTML. Once you have the HTML/
CSS mockup working, take a look at the HTML you used to achieve the effect: Is it
placed before some other element? If so, use the .before() function.) Is the HTML
inside a specific tag? (Then use the .append() or .prepend() functions.)

jQuery also supplies some functions for removing content from a page:

• .replaceWith() completely replaces the selection (include the tag and everything
inside it) with whatever you pass the function. For example, to replace a submit
button on the page with the text “processing…” you could use this code:
$(':submit').replaceWith('<p>processing…</p>');

• .remove() removes the selection from the DOM; essentially erasing it from the
page. For example, to remove a div with the ID of error from the page, you’d
write this code:
$('#error').remove();

420 javascript & jquery: the missing manual

More Functions For
Manipulating HTML

While you may only need the functions listed above and discussed in Chapter 4,
jQuery provides other functions that provide additional ways of manipulating the
HTML of a page:

• .wrap() wraps each element in a selection in a pair of HTML tags. For example,
what if you want to create a fancy caption effect for images on a page? You can
start by selecting images from the page and wrapping them in a <div> with a
class like figure and adding a <p> tag inside that div with a class of caption.
Then, using CSS, you can format the div and caption in whatever way you’d like.
Here’s one way to accomplish that:

1 // loop through the list of images
2 $('img').each(function() {
3 // save reference to current image
4 var $this = $(this);
5 // get the alt property for the caption
6 var caption = $this.attr('alt');
7 // add the HTML
8 $this.wrap('<div class="figure"></div>').after('<p>' + caption + '</p>');
9 }); // end each

The code above first selects all the images on the page and then loops through
the list of images using the .each() function (page 147); on line 4, the current im-
age in the loop is saved into a variable (a good practice, as described on page 404
in this chapter). In line 6, the alt attribute is retrieved from the image and stored
in a variable named caption. Finally, line 8 wraps the image in a <div> tag, and
adds a captions after the image using the .after() function described above.

Note: You can see the .wrap() code listed on line 8 in action in the file wrap.html in the chapter13
tutorial folder.

You pass a complete set of tags to the .wrap() function—$(‘p’).wrap(‘<div></
div>’)—or even a nested set of tags like this:
$('#example').wrap('<div id="outer"><div id="inner"></div></div>');

In the above code, jQuery will wrap the selection with the two divs, leaving the
HTML something like this:
<div id="outer">
 <div id="inner">
 <div id="example">This is the original code on the page</div>
 </div>
</div>

• .wrapInner() wraps the contents of each element in a selection in HTML tags.
For example, say you had the following code in your HTML:
<div id="outer">
<p>This is the contents of outer</p>
</div>

If the browser encounters the code $(‘#outer’).wrapInner(‘<div id=“inner”></
div>’); it transforms the HTML on the page into this:

421chapter 13: getting the most from jquery

Advanced Event
Handling

<div id="outer">
<div id="inner">
<p>This is the contents of outer</p>
</div>
</div>

• .unwrap() simply removes the parent tag surrounding the selection. For ex-
ample, say a page has the following HTML:
<div>
<p>a paragraph</p>
<div>

Running the code $(‘p’).unwrap() changes the HTML to:
<p>a paragraph</p>

The outer <div> is simply removed. Note that unlike the other functions dis-
cussed here, .unwrap() takes no arguments—in other words, don’t put anything
inside the parentheses in .unwrap() or it won’t work.

• .empty() removes all of the contents of a selection, but leaves the selection in
place. For example, say you had a div on a web page with the ID of messageBox.
Using JavaScript, you can dynamically add content to this div to display mes-
sages to a visitor as she interacts with the page. You might fill that div with lots
of content headlines, images, and paragraphs to provide status messages to the
visitor. You may want to empty that box at some point in the program (when
there are no current messages to display, for example), but leave the box in place
so you can later add status messages to it. To remove all the tags inside that box,
you can use this code.
$('#messageBox').empty();

As with .unwrap(), .empty() takes no arguments.

Note: jQuery provides even more functions for manipulating HTML. You can read about all of them at
http://api.jquery.com/category/manipulation/.

Advanced Event Handling
In Chapter 5 you learned about jQuery’s handy functions for assigning events to
elements. For example, if you want to make an alert box pop up each time someone
clicked on a heading 1, you could use the .click() event like this:

$('h1').click(function() {
 alert('ouch!');
}); // end click

jQuery provides functions for responding to different events, like .submit() for when
a visitor submits a form, or the .mouseout() function to do something when a visitor
mouses off of an element. All of those functions are simply shorthand methods of
using the jQuery .bind() function described on page 177.

422 javascript & jquery: the missing manual

Advanced Event
Handling

The .bind() function receives a few arguments: the event type (‘click’, ‘mouseover’,
and so on) and a function to run when that event occurs. For example, you can re-
write the code above like this:

$('h1').bind('click', function() {
 alert('ouch!');
}); // end bind

There’s one big problem with both .bind() and the shorthand event functions like
.click() and .hover(): They’re only applied to the HTML currently on the page. For
the examples in this book, that’s OK; the HTML is loaded, the browser applies event
listeners to the HTML, and a user interacts with the page. However, as you get more
advanced in your programming, you’ll begin to do a lot dynamic updates to web
page content using jQuery’s manipulation functions (like .append(), .before(), and
so on discussed earlier in this chapter). Unfortunately, event handlers already on the
page aren’t applied to HTML you add later, and that can cause problems.

For example, say you create a web game: The object of the game is to remove all the
weeds in a garden. The player has to click a weed to remove it from the screen. But,
of course, as weeds do, they continue to fill up the screen. Basically, the program
keeps adding weeds, and the player needs to click on weeds until they’re all gone.
In this example, each “weed” can be represented by a <div> tag with a picture of a
weed in it. The program continually adds divs to the page, while the player tries to
eliminate all the divs by clicking on them. In other words, each div must have a click
handler applied to it, so it responds to a visitor clicking it. You might add some code
in your program to do that like this:

$('.weed').click(function() {
 $(this).remove();
}); // end click

The problem with this code is that it only applies to elements that already exist. If
you programmatically add new divs—<div class=“weed”>—the click handler isn’t
applied to them.

Code that applies only to existing elements is also a problem when you use Ajax as
described in Part 4 of this book. Ajax lets you update content on a page using infor-
mation retrieved from a web server. Gmail, for example, can display new mail as you
receive it by continually retrieving it from a web server and updating the content
in the web browser. In this case, your list of received emails changes after you first
started using Gmail. Any events that were applied to the page content when the page
loads won’t apply to the new content added from the server.

You can reapply event handlers whenever the page is updated, but this method is
slow and inefficient. Fortunately, jQuery provides another function to handle this
situation: .delegate(). The .delegate() function remains active even when new ele-
ments are added to the page; that is, you only need to use it once in your program,
and it will be able to respond to events on elements added to the page later. Here’s
the basic syntax of .delegate():

423chapter 13: getting the most from jquery

Advanced Event
Handling

$('#container').delegate('selector','event',function() {
 //code to respond to event
}); // end delegate

The syntax is a little strange, so let’s break it down:

• First, you start by selecting a container element. This is confusing, since with
.bind() you select the elements that you want to add events to, but here you
select an element that contains the elements you wish to attach events to. For ex-
ample, if you wanted to attach a click event handler to all of the list items inside
a div with the ID of sidebar, you’d start by selecting the div like this:
$('#sidebar')

If you want to apply a mouseover event handler to all the <a> tags on a page, on
the other hand, you select the body itself:
$('body')

• Next, you call the delegate() function and pass it three arguments: the selector
you wish to attach the event to, the name of the event, and the function that re-
sponds to that event. For example, using delegate to apply a click event handler
to list items inside a div with the ID of sidebar, you’d write this code:
$('#sidebar').delegate('li','click',function() {
 //do something here
}); // end delegate

Likewise, to apply a mouseover event handler to all <a> tags on a page, you
write this:
$('body).delegate('a','mouseover',function() {
 //do something here
}); // end delegate

To see .delegate() in action, open the delegate.html file in the chapter13 tutorial folder.

Note: jQuery also provides a function named .live(), which functions similarly to .delegate() in that it
applies event handlers to page elements that are added after the function runs. However, it is significantly
slower than .delegate() and is best avoided.

425

chapter
14

Going Further with
Java Script

This chapter covers various concepts that can help make you a better JavaScript
programmer. You don’t need most of the ideas here to write functioning Ja-
vaScript programs, so don’t worry if you don’t understand them all. The first

few sections provide helpful tips and methods for working with strings, numbers,
and dates, and once you’ve mastered the basics, these sections can really help you
process visitor input in forms, work with HTML and HTML attributes, and generate
dates for calendars. The section “Putting It All Together” on page 457 contains some
good advice for beginners, but you can program happily for a long time without
needing the information in the other sections in this chapter. But if you want to
expand your skills, this chapter can point you in the right direction.

Working with Strings
Strings are the most common type of data you’ll work with: input from form fields,
the path to an image, a URL, and HTML that you wish to replace on a page are all
examples of the letters, symbols, and numbers that make up strings. You learned the
basics of strings in Chapter 2, but JavaScript provides a lot of useful methods for
working with and manipulating strings.

Determining	the	Length	of	a	String
There are times when you want to know how many characters are in a string. For
example, say you want to make sure that when someone creates an account on your
top secret website, they create a new password that’s more than 6 letters but no more
than 15. Strings have a length property that gives you just this kind of information.

426 javascript & jquery: the missing manual

Working with
Strings

Add a period after the name of the variable, followed by length to get the number of
characters in the string: name.length.

For example, assume you have a form with a text field. The field has the ID of pass-
word. To make sure the password has the proper number of characters, you could
use a conditional statement (page 79) to test the password’s length like this:

var password = $('#password').val();
if (password.length <= 6) {
 alert('That password is too short.');
} else if (password.length > 15) {
 alert('That password is too long.');
}

Note: In the above example, this little snippet of code would also go inside of a submit() event handler
(page 263), so that you’d test whether the visitor entered a long enough password when the form was
submitted.

Changing	the	Case	of	a	String
JavaScript provides two methods to convert strings to all uppercase or all lowercase,
so you can change “hello” to “HELLO” or “NOT” to “not”. Why, you might ask?
Converting letters in a string to the same case makes comparing two strings easier.
For example, say you created a quiz program like the one from Chapter 3 (see page
108) and one of the questions is, “Who was the first American to win the Tour De
France?” You might have some code like this to check the quiz-taker’s answer:

var correctAnswer = 'Greg LeMond';
var response = prompt('Who was the first American to win the Tour De↵
France?', '');
if (response == correctAnswer) {
 // correct
} else {
 // incorrect
}

The answer is Greg LeMond, but what if the person taking the quiz typed Greg Le-
mond? The condition would look like this: ‘Greg Lemond’ == ‘Greg LeMond’. Since
JavaScript treats uppercase letters as different than lowercase letters, the lowercase
‘m’ in Lemond wouldn’t match the ‘M’ in LeMond, so the quiz-taker would have got-
ten this question wrong. The same would happen if her caps lock key was down and
she typed GREG LEMOND.

To get around this difficulty, you can convert both strings to the same case and then
compare them:

if (response.toUpperCase() == correctAnswer.toUpperCase()) {
 // correct
} else {
 // incorrect
}

427chapter 14: going further with java script

Working with
Strings

In this case, the conditional statement converts both the quiz-taker’s answer and the
correct answer to uppercase, so ‘Greg Lemond’ becomes ‘GREG LEMOND’ and ‘Greg
LeMond’ becomes ‘GREG LEMOND’.

To get the string all lowercase, use the toLowerCase() method like this:
var answer = 'Greg LeMond';
alert(answer.toLowerCase()); // 'greg lemond'

Note that neither of these methods actually alters the original string stored in the
variable—they just return that string in either all uppercase or all lowercase. So in
the above example, answer still contains ‘Greg LeMond’ even after the alert appears.
(In other words, these methods work just like a function that returns some other
value as described on page 104.)

Searching	a	String:	indexOf()	Technique
JavaScript provides several techniques for searching for a word, number, or other
series of characters inside a string. Searching can come in handy, for example, if you
want to know which web browser a visitor is using to view your website. Every web
browser identifies information about itself in a string containing a lot of different
statistics. You can see that string for yourself by adding this bit of JavaScript to a page
and previewing it in a web browser:

<script>
alert(navigator.userAgent);
</script>

Navigator is one of a web browser’s objects, and userAgent is a property of the navi-
gator object. The userAgent property contains a long string of information; for ex-
ample, on Internet Explorer 7 running on Windows XP, the userAgent property is:
Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1). So, if you want to see if the
Web browser was IE 7, you can just search the userAgent string for “MSIE 7”.

One method of searching a string is the indexOf() method. Basically, after the string
you add a period, indexOf(), and supply the string you’re looking for. The basic
structure looks like this:

string.indexOf('string to look for')

The indexOf() method returns a number: If the search string isn’t found, the method
returns –1. So if you want to check for Internet Explorer, you can do this:

var browser = navigator.userAgent; // this is a string
if (browser.indexOf('MSIE') != -1) {
 // this is Internet Explorer
}

In this case, if indexOf() doesn’t locate the string ‘MSIE’ in the userAgent string, it
will return –1, so the condition tests to see if the result is not (!=) –1.

When the indexOf() method does find the searched-for string, it returns a number
that’s equal to the starting position of the searched-for string. The following example
makes things a lot clearer:

428 javascript & jquery: the missing manual

Working with
Strings

var quote = 'To be, or not to be.'
var searchPosition = quote.indexOf('To be'); // returns 0

Here, indexOf() searches for the position of ‘To be’ inside the string ‘To be, or not to
be.’ The larger string begins with ‘To be’, so indexOf() finds ‘To be’ at the first posi-
tion. But in the wacky way of programming, the first position is considered 0, the
second letter (o) is at position 1, and the third letter (a space in this case) is 2 (as
explained on page 62, arrays are counted in the same way).

The indexOf() method searches from the beginning of the string. You can also search
from the end of the string by using the lastIndexOf() method. For example, in the
Shakespeare quote, the word ‘be’ appears in two places, so you can locate the first ‘be’
using indexOf() and the last ‘be’ with lastIndexOf():

var quote = "To be, or not to be."
var firstPosition = quote.indexOf('be'); // returns 3
var lastPosition = quote.lastIndexOf('be'); // returns 17

The results of those two methods are pictured in Figure 14-1. In both cases, if ‘be’
didn’t exist anywhere in the string, the result would be –1, and if there’s only one
instance of the searched-for word, indexOf() and lastIndexOf() will return the same
value—the starting position of the searched-for string within the larger string.

Figure 14-1:
The indexOf() and lastIndexOf() methods search for a particular
string inside a larger string. If the search string is found, its position
in the larger string is returned.T o b e , o r n o t t o b e .

quote.indexOf('be');

quote.lastIndexOf('be');

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Extracting	Part	of	a	String	with	slice()
To extract part of a string, use the slice() method. This method returns a portion
of a string. For example, say you had a string like http://www.sawmac.com and you
wanted to eliminate the http:// part. One way to do this is to extract every character
in the string that follows the http:// like this:

var url = 'http://www.sawmac.com';
var domain = url.slice(7); // www.sawmac.com

429chapter 14: going further with java script

Working with
Strings

The slice() method requires a number that indicates the starting index position for
the extracted string (see Figure 14-2). In this example—url.slice(7)—the 7 indicates
the eighth letter in the string (remember, the first letter is at position 0). The method
returns all of the characters starting at the specified index position to the end of the
string.

Figure 14-2:
If you don’t supply a second argument to the slice() method,
it just extracts a string from the specified position (7 in this
example) all the way to the end of the string.h t t p : / / w w w . s a w m a c . c o m

quote.slice(7);

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

You can also extract a specific number of characters within a string by supplying
a second argument to the slice() method. Here’s the basic structure of the slice()
method:

string.slice(start, end);

The start value is a number that indicates the first character of the extracted string.
The end value is a little confusing—it’s not the position of the last letter of the ex-
tracted string; it’s actually the position of the last letter + 1. For example, if you want-
ed to extract the first five letters of the string ‘To be, or not to be.’, you would specify
0 as the first argument, and 5 as the second argument. As you can see in Figure 14-3,
0 is the first letter in the string, and 5 is the sixth letter, but the last letter specified is
not extracted from the string. In other words, the character specified by the second
argument is never part of the extracted string.

Tip: If you want to extract a specific number of characters from a string, just add that number to the start-
ing value. For example, if you want to retrieve the first 10 letters of a string, the first argument would be 0
(the first letter) and the last would be 0 + 10 or just 10: slice(0,10).

You can also specify negative numbers; for example, quote.slice(-6,-1). A negative
number counts backwards from the end of the string, as pictured in Figure 14-3.

430 javascript & jquery: the missing manual

Finding Patterns in
Strings

Figure 14-3:
The slice() method extracts a portion of a string. The
actual string is not changed in any way. For instance,
the string contained in the quote variable in this
example isn’t changed by quote.slice(0,5). The method
simply returns the extracted string, which you can store
inside a variable, display in an alert box, or even pass
as an argument to a function.

T o b e , o r n o t t o b e .

quote.slice(0,5);

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

quote.slice(7,13);

quote.slice(-6,-1);

-1-2-3-4-5-6

var quote=’To be, or not to be.’;

Tip: If you want, say, to extract a string that includes all of the letters from the 6th letter from the end of
the string all the way to the end, you leave off the second argument:

 quote.slice(-6);

Finding Patterns in Strings
Sometimes you wish to search a string, not for an exact value, but for a specific pat-
tern of characters. For example, say you want to make sure when a visitor fills out an
order form, he supplies a phone number in the correct format. You’re not actually
looking for a specific phone number like 503-555-0212. Instead, you’re looking for
a general pattern: three numbers, a hyphen, three numbers, another hyphen, and
four numbers. You’d like to check the value the visitor entered, and if it matches the
pattern (for example, it’s 415-555-3843, 408-555-3782, or 212-555-4828, and so on),
then everything’s OK. But if it doesn’t match that pattern (for example, the visitor
typed 823lkjxdfglkj), then you’d like to post a message like “Hey buddy, don’t try to
fool us!”

JavaScript lets you use regular expressions to find patterns within a string. A regular
expression is a series of characters that define a pattern that you wish to search for.
As with many programming terms, the name “regular expression” is a bit mislead-
ing. For example, here’s what a common regular expression looks like:

/^[-\w.]+@([a-zA-Z0-9][-a-zA-Z0-9]+\.)+[a-zA-Z]{2,4}$/

431chapter 14: going further with java script

Finding Patterns in
Strings

Unless you’re a super-alien from Omicron 9, there’s nothing very regular-looking
about a regular expression. To create a pattern, you use characters like *, +, ?, and \w,
which are translated by the JavaScript interpreter to match real characters in a string
like letters, numbers, and so on.

Note: Pros often shorten the name regular expression to regex.

Creating	and	Using	a	Basic	Regular	Expression
To create a regular expression in JavaScript, you must create a regular expression
object, which is a series of characters between two forward slashes. For example, to
create a regular expression that matches the word “hello”, you’d type this:

var myMatch = /hello/;

Just as an opening and closing quote mark creates a string, the opening / and closing
/ create a regular expression.

There are several string methods that take advantage of regular expressions (you’ll
learn about them starting on page 441), but the most basic method is the search()
method. It works very much like the indexOf() method, but instead of trying to find
one string inside another, larger string, it searches for a pattern (a regular expres-
sion) inside a string. For example, say you want to find ‘To be’ inside the string ‘To
be or not to be.’ You saw how to do that with the indexOf() method on page 427, but
here’s how you can do the same thing with a regular expression:

var myRegEx = /To be/; // no quotes around regular expression
var quote = 'To be or not to be.';
var foundPosition = quote.search(myRegEx); // returns 0

If the search() method finds a match, it returns the position of the first letter matched,
and if it doesn’t find a match, it returns –1. So in the above example, the variable
foundPosition is 0, since ‘To be’ begins at the very beginning (the first letter) of the
string.

As you’ll recall from page 427, the indexOf() method works in the same way. You
might be thinking that if the two methods are the same, why bother with regular ex-
pressions? The benefit of regular expressions is that they can find patterns in a string,
so they can make much more complicated and subtle comparisons than the indexOf()
method, which always looks for a match to an exact string. For example, you could
use the indexOf() method to find out if a string contains the Web address http://www.
missingmanuals.com/, but you’d have to use a regular expression to find any text that
matches the format of a URL—exactly the kind of thing you want to do when verify-
ing if someone supplied a Web address when posting a comment to your blog.

432 javascript & jquery: the missing manual

Finding Patterns in
Strings

However, to master regular expressions, you need to learn the often confusing sym-
bols required to construct a regular expression.

Building	a	Regular	Expression
While a regular expression can be made up of a word or words, more often you’ll
use a combination of letters and special symbols to define a pattern that you hope to
match. Regular expressions provide different symbols to indicate different types of
characters. For example, a single period (.) represents a single character, any charac-
ter, while \w matches any letter or number (but not spaces, or symbols like $ or %).
Table 14-1 provides a list of the most common pattern-matching characters.

Note: If this entire discussion of “regular” expressions is making your head hurt, you’ll be glad to know
this book provides some useful regular expressions (see page 436) that you can copy and use in your
own scripts (without really knowing how they work).

Table 14-1. Common pattern-matching symbols for regular expressions

Character Matches
. Any one character—will match a letter, number, space, or other symbol.

 \w Any word character including a–z, A–Z, the numbers 0–9, and the underscore
character: _.

 \W Any character that’s not a word character. It’s the exact opposite of \w.

 \d Any digit 0–9.

 \D Any character except a digit. The opposite of \d.

 \s A space, tab, carriage return, or new line.

 \S Anything but a space, tab, carriage return, or new line.

^ The beginning of a string. This is useful for making sure no other characters
come before whatever you’re trying to match.

$ The end of a string. Use $ to make sure the characters you wish to match are
at the end of a string. For example, /com$/ matches the string “com”, but only
when it’s the last three letters of the string. In other words, /com$/ would
match “com” in the string “Infocom”, but not ‘com’ in ‘communication’.

 \b A space, beginning of the string, end of string, or any nonletter or number
character such as +, =, or ‘. Use \b to match the beginning or ending of a word,
even if that word is at the beginning or ending of a string.

[] Any one character between the brackets. For example, [aeiou] matches any
one of those letters in a string. For a range of characters, use a hyphen: [a-z]
matches any one lower case letter; [0-9] matches any one number (the same
as \d).

[^] Any character except one in brackets. For example, [^aeiouAEIOU] will match
any character that isn’t a vowel. [^0-9] matches any character that’s not a
number (the same as \D).

433chapter 14: going further with java script

Finding Patterns in
Strings

Character Matches

| Either the characters before or after the | character. For example, a|b will match
either a or b, but not both. (See page 440 for an example of this symbol in
action.)

\ Used to escape any special regex symbol (*,.,\,/, for instance) to search for a
literal example of the symbol in a string. For example, . in regex-speak means
“any character,” but if you want to really match a period in a string you need
to escape it, like this: \..

Learning regular expressions is a topic better presented by example, so the rest of
this section walks you through a few examples of regular expressions to help you
wrap your mind around this topic. Assume you want to match five numbers in a
row—perhaps to check if there’s a U. S. Zip code in a string:

1. Match one number.
The first step is simply to figure out how to match one number. If you refer
to Table 15-1, you’ll see that there’s a special regex symbol for this, \d, which
matches any single number.

2. Match five numbers in a row.
Since \d matches a single number, a simple way to match five numbers is with
this regular expression: \d\d\d\d\d. (Page 435, however, covers a more compact
way to write this.)

3. Match only five numbers.
A regular expression is like a precision-guided missile: It sets its target on the
first part of a string that it matches. So, you sometimes end up with a match
that’s part of a complete word or set of characters. This regular expression
matches the first five numbers in a row that it encounters. For example, it will
match 12345 in the number 12345678998. Obviously, 12345678998 isn’t a Zip
code, so you need a regex that targets just five numbers.
The \b character (called the word boundary character) matches any nonletter or
non-number character, so you could rewrite your regular expression like this:
\b\d\d\d\d\d\b. You can also use the ^ character to match the beginning of a
string and the $ character to match the end of a string. This trick comes in han-
dy if you want the entire string to match your regular expression. For example,
if someone typed “kjasdflkjsdf 88888 lksadflkjsdkfjl” in a Zip code field on an
order form, you might want to ask the visitor to clarify (and fix) her Zip code
before ordering. After all, you’re really looking for something like 97213 (with
no other characters in the string). In this case, the regex would be ̂ \d\d\d\d\d$.

Note: Zip codes can have more than five numbers. The ZIP + 4 format includes a dash and four ad-
ditional numbers after the first five, like this: 97213-1234. For a regular expression to handle this possibility,
see page 436.

434 javascript & jquery: the missing manual

Finding Patterns in
Strings

4. Put your regex into action in JavaScript.
Assume you’ve already captured a user’s input into a variable named zip, and
you want to test to see if the input is in the form of a valid five-number Zip code:
var zipTest = /^\d\d\d\d\d$/; //create regex
if (zip.search(zipTest) == -1) {
 alert('This is not a valid zip code');
} else {
 // is valid format
}

The regex example in these steps works, but it seems like a lot of work to type \d
five times. What if you want to match 100 numbers in a row? Fortunately, JavaScript
includes several symbols that can match multiple occurrences of the same character.
Table 15-2 includes a list of these symbols. You place the symbol directly after the
character you wish to match.

For example, to match five numbers, you can write \d{5}. The \d matches one num-
ber, then the {5} tells the JavaScript interpreter to match five numbers. So \d{100}
would match 100 digits in a row.

Let’s go through another example. Say you wanted to find the name of any GIF file in
a string. In addition, you want to extract the file name and perhaps use it somehow
in your script (for example, you can use the match() method described on page 441).
In other words, you want to find any string that matches the basic pattern of a GIF
file name, such as logo.gif, banner.gif, or ad.gif.

1. Identify the common pattern between these names.
To build a regular expression, you first need to know what pattern of characters
you’re searching for. Here, since you’re after GIFs, you know all the file names
will end in .gif. In other words, there can be any number of letters or numbers
or other characters before .gif.

2. Find .gif.
Since you’re after the literal string ‘.gif ’, you might think that part of the regular
expression would just be .gif. However, if you check out Table 4-3, you’ll see
that a period has special meaning as a “match any character” character. So .gif
would match “.gif,” but it would also match “tgif.” A period matches any single
character so in addition to matching a period, it will also match the “t” in tgif. To
create a regex with a literal period, add a slash before it; so \. translates to “find
me the period symbol.” So the regex to find .gif would be \.gif.

3. Find any number of characters before .gif.
To find any number of characters, you can use .*, which translates to “find one
character (.) zero or more times (*).” That regular expression matches all of the
letters in any string. However, if you used that to create a regular expression
like .*\.gif, you could end up matching more than just a file name. For example,
if you have the string ‘the file is logo.gif ’, the regex .*\.gif will match the entire

435chapter 14: going further with java script

Finding Patterns in
Strings

string, when what you really want is just logo.gif. To do that, use the \S charac-
ter, which matches any nonspace character: \S*\.gif matches just logo.gif in the
string.

4. Make the search case-insensitive.
There’s one more wrinkle in this regular expression: It only finds files that end
in .gif, but .GIF is also a valid file extension, so this regex wouldn’t pick up on a
name like logo.GIF. To make a regular expression ignore the difference between
upper and lowercase letters, you use the i argument when you create the regular
expression:
/\S*\.gif/i

Notice that the i goes outside of the pattern and to the right of the / that defines
the end of the regular expression pattern.

5. Put it into action:
var testString = 'The file is logo.gif'; // the string to test
var gifRegex = /\S*\.gif/i; // the regular expression
var results = testString.match(gifRegex);
var file = results[0]; // logo.gif

This code pulls out the file name from the string. (You’ll learn how the match()
method works on page 441.)

Grouping	Parts	of	a	Pattern
You can use parentheses to create a subgroup within a pattern. Subgroups come in
very handy when using any of the characters in Table 14-2 to match multiple in-
stances of the same pattern.

Table 14-2. Characters used for matching multiple occurrences of the same character or pattern

Character Matches
? Zero or one occurrences of the previous item, meaning the previous item

is optional, but if it does appear, it can only appear once. For example, the
regex colou?r will match both “color” and “colour”, but not “colouur”.

+ One or more occurrences of the previous item. The previous item must ap-
pear at least once.

* Zero or more occurrences of the previous item. The previous item is optional
and may appear any number of times. For example, .* matches any number
of characters.

{n} An exact number of occurrences of the previous item. For example, \d{3}
only matches three numbers in a row.

{n, } The previous item n or more times. For example, a{2,} will match the letter
“a” two or more times, which would match “aa” in the word “aardvark” and
“aaaa” in the word “aaaahhhh”.

{n,m} The previous item at least n times but no more than m times. So \d{3,4} will
match three or four numbers in a row (but not two numbers in a row, nor
five numbers in a row).

436 javascript & jquery: the missing manual

Finding Patterns in
Strings

For example, say you want to see if a string contains either “Apr” or “April”—both of
those begin with “Apr”, so you know that you want to match that, but you can’t just
match “Apr”, since you’d also match the “Apr” in “Apricot” or “Aprimecorp.” So, you
must match “Apr” followed by a space or other word ending (that’s the \b regular
expression character described in Table 15-1) or April followed by a word ending.
In other words, the “il” is optional. Here’s how you could do that using parentheses:

var sentence = 'April is the cruelest month.';
var aprMatch = /Apr(il)?\b/;
if (sentence.search(aprMatch) != -1) {
 // found Apr or April
} else {
 //not found
}

The regular expression used here—/Apr(il)?\b/—makes the “Apr” required, but the
subpattern—(il)—optional (that ? character means zero or one time). Finally, the \b
matches the end of a word, so you won’t match “Apricot” or “Aprilshowers.” (See the
box on page 444 for another use of subpatterns.)

Tip: You can find a complete library of regular expressions at www.regexlib.com. At this website, you’ll
find a regular expression for any situation.

Useful	Regular	Expressions
Creating a regular expression has its challenges. Not only do you need to understand
how the different regular expression characters work, but you then must figure out
the proper pattern for different possible searches. For example, if you want to find
a match for a Zip code, you need to take into account the fact that a Zip code may
be just five numbers (97213) or 5+4 (97213-3333). To get you started on the path to
using regular expressions, here are a few common ones.

Note: If you don’t feel like typing these regular expressions (and who could blame you), you’ll find them
already set up for you in a file named example_regex.txt in the chapter14 folder that’s part of the tutorial
download. (See page 29 for information on downloading the tutorial files.)

U.S. Zip code
Postal codes vary from country to country, but in the United States they appear as
either five numbers, or five numbers followed by a hyphen and four numbers. Here’s
the regex that matches both those options:

\d{5}(-\d{4})?

437chapter 14: going further with java script

Finding Patterns in
Strings

Note: For regular expressions that match the postal codes of other countries, visit http://regexlib.com/
Search.aspx?k=postal+code.

That regular expression breaks down into the following smaller pieces:

• \d{5} matches five digits, as in 97213.
• () creates a subpattern. Everything between the parentheses is considered a sin-

gle pattern to be matched. You’ll see why that’s important in a moment.
• -\d{4} matches the hyphen followed by four digits, like this: -1234.
• ? matches zero or one instance of the preceding pattern. Here’s where the pa-

rentheses come in: (-\d{4}) is treated as a single unit, so the ? means match zero
or one instance of a hyphen followed by four digits. Because you don’t have to
include the hyphen + four, that pattern might appear zero times. In other words,
if you’re testing a value like 97213, you’ll still get a match because the hyphen
followed by four digits is optional.

Note: To make sure an entire string matches a regular expression, begin the regex with ^ and end it with
$. For example, if you want to make sure that someone only typed a validly formatted Zip code into a Zip
code form field, use the regex ^\d{5}(-\d{4})?$. to prevent a response like “blah 97213 blah blah.”

U.S. phone number
U.S. phone numbers have a three-digit area code followed by seven more digits.
However, people write phone numbers in many different ways, like 503-555-1212,
(503) 555-1212, 503.555.1212, or just 503 555 1212. A regex for this pattern is:

\(?(\d{3})\)?[-.](\d{3})[-.](\d{4})

Note: For regular expressions that match the phone number format of other countries, visit http://regex-
lib.com/Search.aspx?k=phone+number.

This regex looks pretty complicated, but if you break it down (and have a good trans-
lation like the following), it comes out making sense:

• \(matches a literal opening parenthesis character. Because parentheses are used
to group patterns (see the previous Zip code example), the opening parentheses
has special meaning in regular expressions. To tell the JavaScript interpreter to
match an actual opening parenthesis, you need to escape the character (just like
escaping the quotes discussed on page 44) with the forward slash character.

• ? indicates that the (character is optional, so a phone number without parenthe-
ses like 503-555-1212 will still match.

• (\d{3}) is a subpattern that matches any three digits.

438 javascript & jquery: the missing manual

Finding Patterns in
Strings

• \)? matches an optional closing parenthesis.
• [-.] will match either a space, hyphen, or period. (Note that normally you have

to escape a period like this \. in order to tell the JavaScript interpreter that you
want to match the period character and not treat it as the special regular ex-
pression symbol that matches any character; however, when inside brackets, a
period is always treated literally.)

• (\d{3}) is another subpattern that matches any three digits.
• [-.] will match either a space, hyphen, or period.
• (\d{4}) is the last subpattern, and it matches any four digits.

Note: Subpatterns are patterns that appear inside parentheses, as in (\d{3}) in the phone number
regular expression above. They come in very handy when you use the replace(), method as described in
the box on page 444.

Email address
Checking for a valid email address is a common chore when accepting user input
from a form. A lot of people try to get away without trying to provide a valid email
using a response like “none of your business,” or people just mistype their email ad-
dress (missing@sawmac.commm, for example). The following regex can check to see
if a string contains a properly formatted email address:

[-\w.]+@([A-z0-9][-A-z0-9]+\.)+[A-z]{2,4}

Note: This regex doesn’t check to see if an address is somebody’s real, working email address; it just
checks that it’s formatted like a real email address.

This regex breaks down like this:

• [-\w.]+ matches a hyphen, any word character, or a period one or more times.
So it will match “bob,” “bob.smith,” or “bob-smith.”

• @ is the @ sign you find in an email address: missing@sawmac.com.
• [A-z0-9] matches one letter or number.
• [-A-z0-9]+ matches one or more instances of a letter, number, or hyphen.
• \. is a period character, so it would match the period in sawmac.com (http://

www.sawmac.com).
• + matches one or more instances of the pattern that includes the above three

matches. This character allows for subdomain names like bob@mail.sawmac.
com.

• [A-z]{2,4} is any letter 2, 3, or 4 times. This matches the com in .com, or uk in
.uk.

439chapter 14: going further with java script

Finding Patterns in
Strings

Note: The email regex listed above doesn’t match all technically valid email addresses. For example,
!#$%&’*+-/=?^_`.{|}~@example.com is technically a valid email address, but the regex described here
won’t match it. It’s designed to find email addresses that people would actually use. If you really want to
be accurate, you can use the following regex. Type this expression on a single line:

/^[\w!#$%&\’*+\/=?^`{|}~.-]+@(?:[a-z\d][a-z\d-]*(?:\.[a-z\d][a-z\d-]*)?)+\.(?:[a-z]
[a-z\d-]+)$/i

Date
A date can be written in many different ways; for example, 09/28/2008, 9-28-2007,
09 28 2007, or even 09.28.2007. (And those are just formats for the United States. In
other parts of the world, the day appears before the month, like 28.09.2007.) Because
your visitors may enter a date in any one of these formats, you need a way to check
to see if they supplied a validly formatted date. (In the box on page 453, you’ll learn
how to convert any of these formats into a single, standard format, so that you can
make sure all the dates you receive on a form are formatted correctly.)

Here’s the regex that checks for a correctly entered date:
([01]?\d)[-\/ .]([0123]?\d)[-\/ .](\d{4})

• () surrounds the next two regex patterns to group them. Together they form the
number for the month.

• [01]? matches either 0 or 1 and the ? makes this optional. This is for the first
number in a month. Obviously it can’t be bigger than 1—there’s no 22 month.
In addition, if the month is January through September, you might just get 5
instead of 05. That’s why it’s optional.

• \d matches any number.
• [-\/ .] will match a hyphen, a forward slash, a period, or a space character.

These are the acceptable separators between the month and day, like 10/21, 10
21, 10.21, or 10-21.

• () is the next subpattern, which is meant to capture the day of the month.
• [0123]? matches either 0, 1, 2, or 3 zero or more times. Since there’s no 40th day

of the month, you limit the first number of the month to one of these four digits.
This pattern is optional (as determined by the ? character), because someone
might just type 9 instead of 09 for the ninth day of the month.

• \d matches any digit.
• [-\/ .] is the same as above.
• () captures the year.
• \d{4} matches any four digits, like 1908 or 2880.

440 javascript & jquery: the missing manual

Finding Patterns in
Strings

Web address
Matching a web address is useful if you’re asking a visitor for his website address
and you want to make sure he’s supplied one, or if you want to scan some text and
identify every URL listed. A basic regular expression for URLs is:

((\bhttps?:\/\/)|(\bwww\.))\S*

This expression is a little tricky because it uses lots of parentheses to group differ-
ent parts of the expression. Figure 14-4 can help guide you through this regular
expression. One set of parentheses (labeled 1) wraps around two other parenthetical
groups (2 and 3). The | character between the two groups represents “or”. In other
words, the regular expression needs to match either 2 or 3.

Figure 14-4:
You can group expressions using parentheses and look for
either one of two expressions by using the | (pipe) character.
For example, the outer expression (1) will match any text that
matches either 2 or 3.((https?\:\/\/)|(\swww\.))\S*

1

2 3

• (is the start of the outer group (1 in Figure 14-4).
• (is the start of inner group (2 in Figure 14-4).
• \b matches the beginning of a word.
• http matches the beginning of a complete web address that begins with http.
• s? is an optional s. Since a web page may be sent via a secure connection, a valid

web address may also begin with https.
• :\/\/ matches ://. Since the forward slash has meaning in regular expressions,

you need to precede it by a backslash to match the forward slash character.
•) is the end of the inner group (2 in Figure 14-4). Taken together, this group will

match either http:// or https://.
• | matches either one or the other group (2 or 3 in Figure 14-4).
• (is the start of second inner group (3 in Figure 14-4).
• \b matches the beginning of a word.

441chapter 14: going further with java script

Finding Patterns in
Strings

• www\. matches www..
•) is the end of the second inner group (3 in Figure 14-4). This group will capture

a URL that is missing the http:// but begins with www.
•) is the end of the outer group (1 in Figure 14-4). At this point, the regular ex-

pression will match text that begins with http://, https://, or www.
• \S* matches zero or more nonspace characters.

This expression isn’t foolproof (for example, it would match a nonsensical URL like
http://#$*%&*@*), but it’s relatively simple, and will successfully match real URLs
like http://www.sawmac.com/missing/js/index.html.

Tip: To see if a string only contains a URL (nothing comes before or after the URL), use the ^
and $ characters at the beginning and end of the regular expression and remove the \b characters:
^((https?:\/\/)|(www\.))\S*$.

Matching	a	Pattern
The search() method described on page 431 is one way to see if a string contains a
particular regular expression pattern. The match() method is another. You can use it
with a string to not only see if a pattern exists within the string, but to also capture
that pattern so that you can use it later in your script. For example, say you have a
text area field on a form for a visitor to add a comment to your site. Perhaps you
want to check if the comments include a URL, and if so, get the URL for further
processing.

The following code finds and captures a URL using match():
// get the contents of the text area
var text='my website is www.missingmanuals.com';
// create a regular expression
var urlRegex = /((\bhttps?:\/\/)|(\bwww\.))\S*/
// find a match for the regular expression in the string
var url = text.match(urlRegex);
alert(url[0]); // www.missingmanuals.com

442 javascript & jquery: the missing manual

Finding Patterns in
Strings

First, the code creates a variable containing a string that includes the URL www.
missingmanuals.com. This variable is just for test purposes here (so you can see what
the match() method does. If you actually wanted to test the contents of a text area on
a form, you could use code like this:

var text = $('#comments').val() ;

Next, the code creates a regular expression to match a URL (see page 440 for the
details on this regex). Finally, it runs the match() method on the string. The match()
function is a string method, so you start with the name of a variable containing a
string, add a period, followed by match(). You pass the match() method a regular
expression to match.

In the above example, the variable url holds the results of the match. If the regular
expression pattern isn’t found in the string, then the result is a special JavaScript
value called null. If there is a match, the script returns an array—the first value of the
array is the matched text. For instance, in this example, the variable url contains an
array, with the first array element being the matched text. In this case, url[0] contains
www.missingmanuals.com (see page 59 for more on arrays).

Note: In JavaScript, a null value is treated the same as false, so you could test to see if the match()
method actually matched something like this:

var url = text.match(urlRegex);

if (! url) {

 //no match

} else {

 //match

 }

Matching every instance of a pattern
The match() method works in two different ways, depending on how you’ve set up
your regular expression. In the above example, the method returns an array with the
first matched text. So, if you had a long string containing multiple URLs, only the
first URL is found. However, you can also turn on a regular expression’s global search
property to search for more than one match in a string.

You make a search global by adding a g at the end of a regular expression when you
create it (just like the i used for a case-insensitive search, as discussed on page 435):

var urlRegex = /((\bhttps?:\/\/)|(\bwww\.))\S*/g

Notice that the g goes outside of the ending / (which is used to enclose the actual pat-
tern). This regular expression performs a global search; when used with the match()
method, it searches for every match within the string and will return an array of all
matched text—a great way to find every URL in a blog entry, for example, or every
instance of a word in a long block of text.

443chapter 14: going further with java script

Finding Patterns in
Strings

You could rewrite the code from page 441 using a global search, like this:
// create a variable containing a string with a URL
var text='there are a lot of great websites like ↵
 www.missingmanuals.com and http://www.oreilly.com';
// create a regular expression with global search
var urlRegex = /((\bhttps?:\/\/)|(\bwww\.))\S*/g
// find a match for the regular expression in the string
var url = text.match(urlRegex);
alert(url[0]); // www.missingmanuals.com
alert(url[1]); // http://www.oreilly.com

You can determine the number of matches by accessing the length property of the
resulting array: url.length. This example will return the number 2, since two URLs
were found in the tested string. In addition, you access each matched string by using
the array’s index number (as described on page 62); so in this example, url[0] is the
first match and url[1] is the second.

Replacing	Text
You can also use regular expressions to replace text within a string. For example, say
you have a string that contains a date formatted like this: 10.28.2008. However, you
want the date to be formatted like this: 10/28/2008. The replace() method can do
that. It takes this form:

string.replace(regex,'replace');

The replace() method takes two arguments: The first is a regular expression that
you wish to find in the string; the second is a string that replaces any matches to the
regular expression. So, to change the format of 10.28.2008 to 10/28/2008, you could
do this:

1 var date='10.28.2008'; // a string
2 var replaceRegex = /\./g // a regular expression
3 var date = date.replace(replaceRegex, '/'); // replace . with /
4 alert(date); // 10/28/2008

Line 1 creates a variable and stores the string ‘10.28.2008’ in it. In a real program,
this string could be input from a form. Line 2 creates the regular expression: The /
and / mark the beginning and end of the regular expression pattern; the \. indicates
a literal period; and the g means a global replace—every instance of the period will
be replaced. If you left out the g, only the first matched period would be replaced,
and you’d end up with ‘10 /28.2008’. Line 3 performs the actual replacement—chang-
ing each . to a /, and stores the result back into the date variable. Finally the newly
formed date—10/28/2008—is displayed in an alert box.

444 javascript & jquery: the missing manual

Finding Patterns in
Strings

POWER USERS’ CLINIC

Using Subpatterns to Replace Text
The replace() method not only can replace matched text
(like the . in 10.28.2008) with another string (like /), but
it can also remember subpatterns within a regular expres-
sion and use those subpatterns when replacing text. As
explained in the Note on page 438, a subpattern is any
part of a regular expression enclosed in parentheses. For
example, the (il) in the regular expression /Apr(il)?\b/ is
a subpattern.

The use of the replace() method demonstrated on page
443 changes 10.28.2008 to 10/27/2008. But what if you
also want to put other formatted dates like 10 28 2008 or
10-28-2008 into the same 10/27/2008 format? Instead of
writing multiple lines of JavaScript code to replace periods,
spaces, and hyphens, you can create a general pattern to
match any of these formats:

var date=’10-28-2008’;

var regex = /([01]?\d)[-\/ .]([0123]?\d)
[-\/ .](\d{4})/;

date = date.replace(regex, ‘$1/$2/$3’);

This example uses the regular expression described on
page 439 to match a date. Notice the groups of patterns
within parentheses—for example, ([01]?\d). Each subpat-
tern matches one part of the date. The replace() method
remembers matches to those subpatterns, and can use
them as part of the replacement string. In this case, the
replacement string is ‘$1/$2/$3’. A dollar sign followed by a
number represents one of the matched subpatterns. $1, for
example, matches the first subpattern—the month. So this
replacement string translates to “put the first subpattern
here, followed by a /, followed by the second subpattern
match, followed by another /, and finally followed by the
last subpattern.”

Trying	Out	Regular	Expressions
You’ll find sample regular expressions in the example_regex.txt file that accompanies
the tutorial files. In addition, you’ll find a file named regex_tester.html in the testbed
folder. You can open this web page in a browser and try your hand at creating your
own regular expressions (see Figure 14-5). Just type the string you’d like to search in
the “String to Search” box, and then type a regular expression in the box (leave out
the beginning and ending / marks used when creating a regex in JavaScript and just
type the search pattern). You can then select the method you’d like to use—Search,
Match, or Replace—and any options, like case-insensitivity or global search. Click
the Run button and see how your regex works.

445chapter 14: going further with java script

Working with
Numbers

Figure 14-5:
This sample page, in-
cluded with the tuto-
rial files, lets you test
out regular expres-
sions using different
methods—like Search
or Match—and try
different options such
as case-insensitive or
global searches.

Working with Numbers
Numbers are an important part of programming. They let you perform tasks like
calculating a total sales cost, determining the distance between two points, or simu-
lating the roll of a die by generating a random number from 1 to 6. JavaScript gives
you many different ways of working with numbers.

Changing	a	String	to	a	Number
When you create a variable, you can store a number in it like this:

var a = 3.25;

However, there are times when a number is actually a string. For example, if you use
the prompt() method (page 57) to get visitor input, even if someone types 3.25, you’ll
end up with a string that contains a number. In other words, the result will be ‘3.25’
(a string) and not 3.25 (a number). Frequently, this method doesn’t cause a problem,
since the JavaScript interpreter usually converts a string to a number when it seems
like a number is called for. For example:

var a = '3';
var b = '4';
alert(a*b); // 12

446 javascript & jquery: the missing manual

Working with
Numbers

In this example, even though the variables a and b are both strings, the JavaScript
interpreter converts them to numbers to perform the multiplication (3 x 4) and re-
turn the result: 12.

However, when you use the + operator, the JavaScript interpreter won’t make that
conversion, and you can end up with some strange results:

var a = '3';
var b = '4';
alert(a+b); // 34

In this case, both a and b are strings; the + operator not only does mathematical
addition, it also combines (concatenates) two strings together (see page 51). So in-
stead of adding 3 and 4 to get 7, in this example, you end up with two strings fused
together: 34.

When you need to convert a string to a number, JavaScript provides several ways:

• Number() converts whatever string is passed to it into a number, like this:
var a = '3';
a = Number(a); // a is now the number 3

So the problem of adding two strings that contain numbers could be fixed like
this:
var a = '3';
var b = '4';
var total = Number(a) + Number(b); // 7

A faster technique is the + operator, which does the same thing as Number().
Just add a + in front of a variable containing a string, and the JavaScript inter-
preter converts the string to a number.
var a = '3';
var b = '4';
var total = +a + +b // 7

The downside of either of these two techniques is that if the string contains
anything except numbers, a single period, or a + or – sign at the beginning of
the string, you’ll end up with a non-number, or the JavaScript value NaN, which
means “not a number” (see the next page).

• parseInt() tries to convert a string to a number as well. However, unlike Num-
ber(), parseInt() will try to change even a string with letters to a number, as long
as the string begins with numbers. This command can come in handy when
you get a string like ‘20 years’ as the response to a question about someone’s age:
var age = '20 years';
age = parseInt(age,10); //20

The parseInt() method looks for either a number or a + or – sign at the begin-
ning of the string and continues to look for numbers until it encounters a non-
number. So in the above example, it returns the number 20 and ignores the
other part of the string, ‘ years’.

447chapter 14: going further with java script

Working with
Numbers

Note: You’re probably wondering what the 10 is doing in parseInt(age,10);. JavaScript can handle Octal
numbers (which are based on 8 different digits 0-7, unlike decimal numbers which are based on 10
different digits 0-9); when you add the, 10 to parseInt(), you’re telling the JavaScript interpreter to treat
whatever the input is as a decimal number. That way, JavaScript correctly interprets a string like ‘08’ in a
prompt window or form field—decimally. For example, in this code age would be equal to 0:

var age = '08 years';

age = parseInt(age);

However, in the following code the variable age would hold the value 8:

var age = '08 years';

age = parseInt(age,10);

In other words, always add the ,10 when using the parseInt() method.

• parseFloat() is like parseInt(), but you use it when a string might contain a deci-
mal point. For example, if you have a string like ‘4.5 acres’, you can use parse-
Float() to retrieve the entire value including decimal places:
var space = '4.5 acres';
space = parseFloat(space); // 4.5

If you used parseInt() for the above example, you’d end up with just the number
4, since parseInt() only tries to retrieve whole numbers (integers).

Which of the above methods you use depends on the situation: If your goal is to
add two numbers, but they’re strings, then use Number() or + operator. However, if
you want to extract a number from a string that might include letters, like ‘200px’ or
‘1.5em’, then use parseInt() to capture whole numbers (200, for example) or parse-
Float() to capture numbers with decimals (1.5, for example).

Testing	for	Numbers
When using JavaScript to manipulate user input, you often need to verify that the
information supplied by the visitor is of the correct type. For example, if you ask for
people’s years of birth, you want to make sure they supply a number. Likewise, when
you’re performing a mathematical calculation, if the data you use for the calculation
isn’t a number, then your script might break.

To verify that a string is a number, use the isNaN() method. This method takes a
string as an argument and tests whether the string is “not a number.” If the string
contains anything except a plus or minus (for positive and negative numbers) fol-
lowed by numbers and an optional decimal value, it’s considered “not a number,” so
the string ‘-23.25’ is a number, but the string ‘24 pixels’ is not. This method returns
either true (if the string is not a number) or false (if it is a number). You can use
isNaN() as part of a conditional statement like this:

448 javascript & jquery: the missing manual

Working with
Numbers

var x = '10'; // is a number
if (isNaN(x)) {
 // won't run because x IS a number
} else {
 // will run because x is a number
}

Rounding	Numbers
JavaScript provides a way to round a fractional number to an integer—for example,
rounding 4.5 up to 5. Rounding comes in handy when you’re performing a calcula-
tion that must result in a whole number. For example, say you’re using JavaScript to
dynamically set a pixel height of a <div> tag on the page based on the height of the
browser window. In other words, the height of the <div> is calculated using the win-
dow’s height. Any calculation you make might result in a decimal value (like 300.25),
but since there’s no such thing as .25 pixels, you need to round the final calculation
to the nearest integer (300, for example).

You can round a number using the round() method of the Math object. The syntax
for this looks a little unusual:

Math.round(number)

You pass a number (or variable containing a number) to the round() method, and it
returns an integer. If the original number has a decimal place with a value below .5,
the number is rounded down; if the decimal place is .5 or above, it is rounded up. For
example, 4.4 would round down to 4, while 4.5 rounds up to 5.

var decimalNum = 10.25;
var roundedNum = Math.round(decimalNum); // 10

Note: JavaScript provides two other methods for rounding numbers: Math.ceil() and Math.floor(). You
use them just like Math.round(), but Math.ceil() always rounds the number up (for example, Math.
ceil(4.0001) returns 5), while Math.floor() always rounds the number down: Math.floor(4.99999) returns
4. To keep these two methods clear in your mind, think a ceiling is up, and a floor is down.

Formatting	Currency	Values
When calculating product costs or shopping cart totals, you’ll usually include the
cost, plus two decimals out, like this: 9.99. But even if the monetary value is a whole
number, it’s common to add two zeros, like this: 10.00. And a currency value like 8.9
is written as 8.90. Unfortunately, JavaScript doesn’t see numbers that way: It leaves
the trailing zeros off (10 instead of 10.00, and 8.9 instead of 8.90, for example).

Fortunately, there’s a method for numbers called toFixed(), which lets you convert a
number to a string that matches the number of decimal places you want. To use it,
add a period after a number (or after the name of a variable containing a number),
followed by toFixed(2):

449chapter 14: going further with java script

Working with
Numbers

var cost = 10;
var printCost = '$' + cost.toFixed(2); // $10.00

The number you pass the toFixed() method determines how many decimal places to
go out to. For currency, use 2 to end up with numbers like 10.00 or 9.90; if you use 3,
you end up with 3 decimal places, like 10.000 or 9.900.

If the number starts off with more decimal places than you specify, the number is
rounded to the number of decimal places specified. For example:

var cost = 10.289;
var printCost = '$' + cost.toFixed(2); // $10.29

In this case, the 10.289 is rounded up to 10.29.

Note: The toFixed() method only works with numbers. So if you use a string, you end up with an error:

var cost='10';//a string

var printCost='$' + cost.toFixed(2);//error

To get around this problem, you need to convert the string to a number as described on page 445, like
this:

var cost='10';//a string

cost = +cost; // or cost = Number(cost);

var printCost=’$’ + cost.toFixed(2);//$10.00

Creating	a	Random	Number
Random numbers can help add variety to a program. For example, say you have an
array of questions for a quiz program (like the quiz tutorial on page 108). Instead of
asking the same questions in the same order each time, you can randomly select one
question in the array. Or, you could use JavaScript to randomly select the name of
a graphic file from an array and display a different image each time the page loads.
Both of these tasks require a random number.

JavaScript provides the Math.random() method for creating random numbers.
This method returns a randomly generated number between 0 and 1 (for exam-
ple, .9716907176080688 or .10345038010895868). While you might not have much
need for numbers like those, you can use some simple math operations to generate a
whole number from 0 to another number. For example, to generate a number from
0 to 9, you’d use this code:

Math.floor(Math.random()*10);

This code breaks down into two parts. The part inside the Math.floor() method—
Math.random()*10—generates a random number between 0 and 10. That will gen-
erate numbers like 4.190788392268892; and since the random number is between
0 and 10, it never is 10. To get a whole number, the random result is passed to the
Math.floor() method, which rounds any decimal number down to the nearest whole
number, so 3.4448588848 becomes 3 and .1111939498984 becomes 0.

450 javascript & jquery: the missing manual

Dates and Times

If you want to get a random number between 1 and another number, just multiply
the random() method by the uppermost number, and use the Math.ceil() method
(which rounds a number up to the neareast integer). For example, if you want to
simulate a die roll to get a number from 1 to 6:

var roll = Math.ceil(Math.random()*6); // 1,2,3,4,5 or 6

Randomly selecting an array element
You can use the Math.random() method to randomly select an item from an array.
As discussed on page 62, each item in an array is accessed using an index number.
The first item in an array uses an index value of 0, and the last item in the array is
accessed with an index number that’s 1 minus the total number of items in the array.
Using the Math.random() method makes it really easy to randomly select an array
item:

var people = ['Ron','Sally','Tricia','Bob']; //create an array
var random = Math.floor(Math.random() * people.length);
var rndPerson = people[random]; //

The first line of this code creates an array with four names. The second line does two
things: First, it generates a random number between 0 and the number of items in
the array (people.length)—in this example, a number between 0 and 4. Then it uses
the Math.floor() method to round down to the nearest integer, so it will produce the
number 0, 1, 2, or 3. Finally, it uses that number to access one element from the array
and store it in a variable named rndPerson.

A function for selecting a random number
Functions are a great way to create useful, reusable snippets of code (page 100).
If you use random numbers frequently, you might want a simple function to help
you select a random number between any two numbers—for example, a number
between 1 and 6, or 100 and 1,000. The following function is called using two argu-
ments: The first is the lowest possible value (1 for example), and the second is the
largest possible value (6 for example):

function rndNum(from, to) {
 return Math.floor((Math.random()*(to - from + 1)) + from);
}

To use this function, add it to your web page (as described on page 100), and then
call it like this:

var dieRoll = rndNum(1,6); // get a number between 1 and 6

Dates and Times
If you want to keep track of the current date or time, turn to JavaScript’s Date object.
This special JavaScript object lets you determine the year, month, day of the week,
hour, and more. To use it, you create a variable and store a new Date object inside it
like this:

var now = new Date();

451chapter 14: going further with java script

Dates and Times

The new Date() command creates a Date object containing the current date and
time. Once created, you can access different pieces of time and date information
using various date-related methods as listed in Table 14-3. For example, to get the
current year, use the getFullYear() method like this:

var now = new Date();
var year = now.getFullYear();

Note: new Date() retrieves the current time and date as determined by each visitor’s computer. In other
words, if someone hasn’t correctly set his computer’s clock, then the date and time won’t be accurate.

Table 14-3. Methods for accessing parts of the Date object

Method What it returns
 getFullYear() The year: 2008, for example.

 getMonth() The month as an integer between 0 and 11: 0 is January and 11 is
December.

 getDate() The day of the month—a number between 1 and 31.

 getDay() The day of the week as a number between 0 and 6. 0 is Sunday, and
6 is Saturday.

 getHours() Number of hours on a 24-hour clock (a number between 0 and 23).
For example, 11p.m. is 23.

 getMinutes() Number of minutes between 0 and 59.

 getSeconds() Number of seconds between 0 and 59.

 getTime() Total number of milliseconds since January 1, 1970 at midnight (see
box on page 453).

Getting	the	Month
To retrieve the month for a Date object, use the getMonth() method, which returns
the month’s number:

var now = new Date();
var month = now.getMonth();

However, instead of returning a number that makes sense to us humans (as in 1
meaning January), this method returns a number that’s one less. For example, Janu-
ary is 0, February is 1, and so on. If you want to retrieve a number that matches how
we think of months, just add 1 like this:

var now = new Date();
var month = now.getMonth()+1;//matches the real month

452 javascript & jquery: the missing manual

Dates and Times

There’s no built-in JavaScript command that tells you the name of a month. For-
tunately, JavaScript’s strange way of numbering months comes in handy when you
want to determine the actual name of the month. You can accomplish that by first
creating an array of month names, then accessing a name using the index number
for that month:

var months = ['January','February','March','April','May',
 'June','July','August','September',
 'October','November','December'];
var now = new Date();
var month = months[now.getMonth()];

The first line creates an array with all twelve month names, in the order they occur
(January–December). Remember that to access an array item you use an index num-
ber, and that arrays are numbered starting with 0 (see page 62). So to access the first
item of the array months, you use months[0]. So, by using the getMonth() method,
you can retrieve a number to use as an index for the months array and thus retrieve
the name for that month.

Getting	the	Day	of	the	Week
The getDay() method retrieves the day of the week. And as with the getMonth()
method, the JavaScript interpreter returns a number that’s one less than what you’d
expect: 0 is considered Sunday, the first day of the week, while Saturday is 6. Since
the name of the day of the week is usually more useful for your visitors, you can use
an array to store the day names and use the getDay() method to access the particular
day in the array, like this:

var days = ['Sunday','Monday','Tuesday','Wednesday',
 'Thursday','Friday','Saturday'];
var now = new Date();
var dayOfWeek = days[now.getDay()];

Getting	the	Time
The Date object also contains the current time, so you can display the current time
on a web page or use the time to determine if the visitor is viewing the page in the
a.m. or p.m. You can then do something with that information, like display a back-
ground image of the sun during the day, or the moon at night.

453chapter 14: going further with java script

Dates and Times

POWER USERS’ CLINIC

The Date Object Behind the Scenes
JavaScript lets you access particular elements of the Date
object, such as the year or the day of the month. However,
the JavaScript interpreter actually thinks of a date as the
number of milliseconds that have passed since midnight
on January 1, 1970. For example, Wednesday, February 1,
2012 is actually 131328083200000 to the JavaScript inter-
preter.

That isn’t a joke: As far as JavaScript is concerned, the
beginning of time was January 1, 1970. That date (called
the “Unix epoch”) was arbitrarily chosen in the 70s by
programmers creating the Unix operating system, so they
could all agree on a way of keeping track of time. Since
then, this way of tracking a date has become common in
many programming languages and platforms.

Whenever you use a Date method like getFullYear(), the
JavaScript interpreter does the math to figure out (based
on how many seconds have elapsed since January 1, 1970)
what year it is. If you want to see the number of millisec-
onds for a particular date, you use the getTime() method:

var sometime = new Date();

var msElapsed = sometime.getTime();

Tracking dates and times as milliseconds makes it easier to
calculate differences between dates. For example, you can
determine the amount of time until next New Year’s Day
by first getting the number of milliseconds that will have
elapsed from 1/1/1970 to when next year rolls around
and then subtracting the number of milliseconds that have
elapsed from 1/1/1970 to today:

// milliseconds from 1/1/1970 to today

var today = new Date();

// milliseconds from 1/1/1970 to next new
year

var nextYear = new Date(2013,0,1);

// calculate milliseconds from today to
next year

var timeDiff = nextYear - today;

The result of subtracting two dates is the number of milli-
seconds difference between the two. If you want to convert
that into something useful, just divide it by the number of
milliseconds in a day (to determine how many days) or
the number of milliseconds in an hour (to determine how
many hours), and so on.

var second = 1000; // 1000 milliseconds in
a second

var minute = 60*second; // 60 seconds in
a minute

var hour = 60*minute; // 60 minutes in an
hour

var day = 24*hour; // 24 hours in a day

var totalDays = timeDiff/day; // total
number of days

(In this example, you may have noticed a different way
to create a date: new Date(2009,0,1). You can read more
about this method on page 450.)

454 javascript & jquery: the missing manual

Dates and Times

You can use the getHours(), getMinutes(), and getSeconds() methods to get the hours,
minutes, and seconds. So to display the time on a web page, add the following in the
HTML where you wish the time to appear:

var now = new Date();
var hours = now.getHours();
var minutes = now.getMinutes();
var seconds = now.getSeconds();
document.write(hours + ":" + minutes + ":" + seconds);

This code produces output like 6:35:56 to indicate 6 a.m., 35 minutes, and 56 sec-
onds. However, it will also produce output that you might not like, like 18:4:9 to
indicate 4 minutes and 9 seconds after 6 p.m. One problem is that most people read-
ing this book, unless they’re in the military, don’t use the 24-hour clock. They don’t
recognize 18 as meaning 6 p.m. An even bigger problem is that times should be
formatted with two digits for minutes and seconds (even if they’re a number less
than 10), like this: 6:04:09. Fortunately, it’s not difficult to adjust the above script to
match those requirements.

Changing hours to a.m. and p.m.
To change hours from a 24-hour clock to a 12-hour clock, you need to do a couple
of things. First, you need to determine if the time is in the morning (so you can
add ‘am’ after the time) or in the afternoon (to append ‘pm’). Second, you need to
convert any hours greater than 12 to their 12-hour clock equivalent (for example,
change 14 to 2 p.m.).

Here’s the code to do that:
 1 var now = new Date();
 2 var hour = now.getHours();
 3 if (hour < 12) {
 4 meridiem = 'am';
 5 } else {
 6 meridiem = 'pm';
 7 }
 8 hour = hour % 12;
 9 if (hour==0) {
10 hour = 12;
11 }
12 hour = hour + ' ' + meridiem;

Note: The column of numbers at the far left is just line numbering to make it easier for you to follow the
discussion below. Don’t type these numbers into your own code!

Lines 1 and 2 grab the current date and time and store the current hour into a vari-
able named hour. Lines 3–7 determine if the hour is in the afternoon or morning; if
the hour is less than 12 (the hour after midnight is 0), then it’s the morning (a.m.);
otherwise, it’s the afternoon (p.m.).

455chapter 14: going further with java script

Dates and Times

Line 8 introduces a mathematical operator called modulus and represented by a
percent (%) sign. It returns the remainder of a division operation. For example, 2
divides into 5 two times (2 x 2 is 4), with 1 left over. In other words, 5 % 2 is 1. So in
this case, if the hour is 18, 18 % 12 results in 6 (12 goes into 18 once with a remainder
of 6). 18 is 6 p.m., which is what you want. If the first number is smaller than the
number divided into it (for example, 8 divided by 12), then the result is the original
number. For example, 8 % 12 just returns 8; in other words, the modulus operator
doesn’t change the hours before noon.

Lines 9–11 take care of two possible outcomes with the modulus operator. If the
hour is 12 (noon) or 0 (after midnight), then the modulus operator returns 0. In this
case, hour is just set to 12 for either 12 p.m. or 12 a.m.

Finally, line 12 combines the reformatted hour with a space and either “am” or “pm”,
so the result is displayed as, for example, “6 am” or “6 pm”.

Padding single digits
As discussed on the previous page, when the minutes or seconds values are less than
10, you can end up with weird output like 7:3:2 p.m. To change this output to the
more common 7:03:02 p.m., you need to add a 0 in front of the single digit. It’s easy
with a basic conditional statement:

1 var minutes = now.getMinutes();
2 if (minutes<10) {
3 minutes = '0' + minutes;
4 }

Line 1 grabs the minutes in the current time, which in this example could be 33 or
3. Line 2 simply checks if the number is less than 10, meaning the minute is a single
digit and needs a 0 in front of it. Line 3 is a bit tricky, since you can’t normally add a 0
in front of a number: 0 + 2 equals 2, not 02. However, you can combine strings in this
way so ‘0’ + minutes means combine the string ‘0’ with the value in the minutes vari-
able. As discussed on page 446, when you add a string to a number, the JavaScript in-
terpreter converts the number to a string as well, so you end up with a string like ‘08’.

You can put all of these parts together to create a simple function to output times in
formats like 7:32:04 p.m., or 4:02:34 a.m., or even leave off seconds altogether for a
time like 7:23 p.m.:

function printTime(secs) {
 var sep = ':'; //seperator character
 var hours,minutes,seconds,time;
 var now = new Date();
 hours = now.getHours();
 if (hours < 12) {
 meridiem = 'am';
 } else {
 meridiem = 'pm';
 }
 hours = hours % 12;
 if (hours==0) {
 hours = 12;

456 javascript & jquery: the missing manual

Dates and Times

 }
 time = hours;
 minutes = now.getMinutes();
 if (minutes<10) {
 minutes = '0' + minutes;
 }
 time += sep + minutes;
 if (secs) {
 seconds = now.getSeconds();
 if (seconds<10) {
 seconds = '0' + seconds;
 }
 time += sep + seconds;
 }
 return time + ' ' + meridiem;
}

You’ll find this function in the file printTime.js in the chapter14 folder in the Tutori-
als. You can see it in action by opening the file time.html (in that same folder) in a
web browser. To use the function, either attach the printTime.js file to a web page, or
copy the function into a web page or another external JavaScript file. To get the time,
just call the function like this: printTime(), or, if you want the seconds displayed as
well, printTime(true). The function will return a string containing the current time
in the proper format.

Creating	a	Date	Other	Than	Today
So far, you’ve seen how to use new Date() to capture the current date and time on a
visitor’s computer. But what if you want to create a Date object for next Thanksgiving
or New Year’s? JavaScript lets you create a date other than today in a few different
ways. You might want to do this if you’d like to do a calculation between two dates:
for example, “How many days until the new year?” (Also see the box on page 453.)

When using the Date() method, you can also specify a date and time in the future or
past. The basic format is this:

new Date(year,month,day,hour,minutes,seconds,milliseconds);

For example, to create a Date for noon on New Year’s Day 2012, you could do this:
var ny2012 = new Date(2012,0,1,12,0,0,0);

This code translates to “create a new Date object for January 1, 2012 at 12 o’clock, 0
minutes, 0 seconds, and 0 milliseconds.” You must supply at least a year and month,
but if you don’t need to specify an exact time, you can leave off milliseconds, sec-
onds, minutes, and so on. For example, to just create a date object for January 1,
2012, you could do this:

var ny2012 = new Date(2012,0,1);

Note: Remember that JavaScript uses 0 for January, 1 for February, and so on, as described on page 451.

457chapter 14: going further with java script

Putting It All
Together

Creating a date that’s one week from today
As discussed in the box on page 453, the JavaScript interpreter actually treats a date
as the number of milliseconds that have elapsed since Jan 1, 1970. Another way to
create a date is to pass a value representing the number of milliseconds for that date:

new Date(milliseconds);

So another way to create a date for January 1, 2012 would be like this:
var ny2012 = new Date(1325404800000);

Of course, since most of us aren’t human calculators, you probably wouldn’t think
of a date like this. However, milliseconds come in very handy when you’re creating a
new date that’s a certain amount of time from another date. For example, when set-
ting a cookie using JavaScript, you need to specify a date at which point that cookie
is deleted from a visitor’s browser. To make sure a cookie disappears after one week,
you need to specify a date that’s one week from today.

To create a date that’s one week from now, you could do the following:
var now = new Date(); // today
var nowMS = now.getTime(); // get # milliseconds for today
var week = 1000*60*60*24*7; // milliseconds in one week
var oneWeekFromNow = new Date(nowMS + week);

The first line stores the current date and time in a variable named now. Next, the get-
Time() method extracts the number of milliseconds that have elapsed from January
1, 1970 to today. The third line calculates the total number of milliseconds in a single
week (1000 milliseconds * 60 seconds * 60 minutes * 24 hours * 7 days). Finally, the
code creates a new date by adding the number of milliseconds in a week to today.

Putting It All Together
So far in this book, you’ve seen lots of tasks that JavaScript can accomplish: form
validation, image rollovers, photo galleries, user interface improvements like tabbed
and accordion panels, and more. But you might be wondering, how do you put them
together to work with your site? After all, once you start using JavaScript, you’ll
probably want to use it to improve every page of your site. Here are some tips for
how to use multiple scripts on your site.

Using	External	JavaScript	Files
As mentioned on page 27, external JavaScript files are an efficient way to share the
same JavaScript code among web pages. An external file makes updating your Java-
Script easier—there’s just one file to edit if you need to enhance (or fix) your Java-
Script code. In addition, when an external JavaScript file is downloaded, it’s stored in
the browser’s cache, so it doesn’t need to be downloaded a second time, making web
pages feel more responsive and load more quickly.

In the case of a JavaScript library like jQuery, external JavaScript files are a
necessity—after all, your web pages would be unnecessarily large and difficult to
maintain if you put the actual jQuery JavaScript code into each page. Furthermore,

458 javascript & jquery: the missing manual

Putting It All
Together

jQuery plug-ins are supplied as external files, so you need to link them to a web page
if you want to use them. Linking to an external JavaScript file is as easy as this:

<script src="js/ui.tabs.js"></script>

Putting your own JavaScript code into external JavaScript files can also help make
your code more reusable and your site feel faster—but only if you actually share that
code among web pages. For example, with the form validation script you created on
page 278, it doesn’t make sense to put the code used to create the validation rules
and error messages into an external file, since all of those rules and error messages
are specific to the form elements on that page, and wouldn’t work on a form that has
different form fields. In that case, it’s best to just use the JavaScript to validate the
form within the web page itself.

However, the validation plug-in file you learned about on page 278 can be used for
any form, so it makes sense to have that in a separate file. The same is true for any
code that you’ll use in multiple pages. For example, on page 273 you learned how to
focus the first field of a form using JavaScript—that’s something you might want to
do for every form. Likewise, the box on page 271 presents the JavaScript necessary to
prevent a visitor from hitting the submit button multiple times (and thus submitting
the form data more than once), which is also useful for any form page. So, you might
want to combine these two scripts into a single external file named something like
forms.js. The JavaScript code would look something like this:

 1 $(document).ready(function() {
 2 // focus first text field
 3 $(":text")[0].focus();
 4
 5 // disable submit button on submit
 6 $('form').submit(function() {
 7 var subButton = $(this).find(':submit');
 8 subButton.attr('disabled',true);
 9 subButton.val('...sending information...');
10 });
11 }); //end ready

Note that since this code relies on jQuery, you must wrap it inside the $(document).
ready() function (lines 1 and 11). In fact, every external file that relies on jQuery
must start with the code on line 1 above and end with the code on line 10.

Note: jQuery can handle multiple $(document).ready() functions without any problems. For example,
you can have several external JavaScript files that do various things to the page, and each file can have a
$(document).ready() function, and you can include a $(document).ready() function within <script> that
appears only on that page. That’s perfectly fine with jQuery.

Using the same script across multiple pages requires a little planning on your part.
For example, line 3 places the cursor into the first text field on a web page. In most
cases, that makes sense—you want the focus to be on the first field so that a visitor
can start filling out the form. However, if the page has more than one form, this code
might not work as you want it to.

459chapter 14: going further with java script

Writing More
Efficient JavaScript

For example, if you have a search box at the top of the page and a separate form for
submitting a product order, the code in line 3 will put the focus on the search box
and not the first text field in the order form. In this case, you need to think through
the problem a bit and come up with a way of making sure the proper text field has
the focus when the page loads. Here are two possible solutions:

• Add a class name to the field you want the focus on when the page loads. For
example, say you add the class name focus to the text field like this:
<input type="text" class="focus" name="firstName">

You could then you use this JavaScript to make sure that field is focused:
$('.focus').focus();

To use this code, you just need to make sure that you add the focus class to a
text field on each form page, and make sure you link the external JavaScript file
containing this code to each of those form pages.

• You can get the same effect by adding a class name to the <form> tag itself, us-
ing this JavaScript:
$('.focus :text')[0].focus();

This code automatically focuses the first text field of a form with the class focus.
The benefit of this approach is that the first text field always gets the focus, so if
you reorganize your form (add a few more text fields to the beginning, for ex-
ample), you know that the first text field will get focus and not some other field
(with the focus class) further down the page.

Once you start using JavaScript, you might end up using several scripts on all (or
nearly all) of your web pages. For example, you might have some rollover images
(page 207), and use JavaScript to make sure links outside your site open in a new
window (page 238). In this situation, it’s useful to create an external JavaScript file
with all of the scripts you share among your site—you could call the file something
like site_scripts.js or simply site.js.

Note: jQuery has a built-in mechanism to protect you from producing unwanted JavaScript errors.
JavaScript usually spits out an error if you try to perform an action on something that doesn’t exist—for
example, trying to select a text field on a page that doesn’t have a text field. Fortunately, jQuery ignores
these kinds of errors.

Writing More Efficient JavaScript
Programming is a lot of work. Programmers are always looking for ways to do things
faster and with fewer lines of code. While there are lots of tips and tricks, the follow-
ing techniques are especially useful for working with JavaScript and jQuery.

460 javascript & jquery: the missing manual

Writing More
Efficient JavaScript

Putting	Preferences	in	Variables
One important lesson that programmers learn is how to extract details from scripts
so that they are more flexible and easier to update. For example, say you want to
change the color of a paragraph of text to orange when a visitor clicks on it. You
could do that with jQuery using the css() function (page 143) like this:

$('p').click(function() {
 $(this).css('color','#F60');
});

In this case, the color orange (#F60) is hard-coded into this step. Say you apply this
same color in other steps (maybe to add a background color when the visitor mouses
over a table cell). You might be tempted to write #F60 into those steps as well. A bet-
ter approach is to place the color into a variable at the beginning of your script and
then use that variable throughout your script:

 1 $(document).ready(function() {
 2 var hColor='#F60';
 3 $('p').click(function() {
 4 $(this).css('color',hColor);
 5 });
 6 $('td').hover(
 7 function() {
 8 $(this).css('backgroundColor',hColor);
 9 },
10 function() {
11 $(this).css('backgroundColor','transparent');
12 }
13);
14 }); //end ready()

In this example, the variable hColor now holds a hexadecimal color value—that vari-
able is used both in the click event for the <p> tags, and in a hover event for the <td>
tags. If you later decide orange isn’t your thing, you can change the value stored in
the variable—var hColor=’#F33’;—and now the script will use that color.

You could make the above code even more flexible by uncoupling the connection
between the color used for the <p> tags and <td> tags. Currently, they’re both set to
the same color, but if you want to make it so that you could eventually assign differ-
ent colors to each, you could add an additional variable to your code:

 1 $(document).ready(function() {
 2 var pColor='#F60';
 3 var tdColor=pColor;
 4 $('p').click(function() {
 5 $(this).css('color',pColor);
 6 });
 7 $('td').hover(
 8 function() {
 9 $(this).css('backgroundColor',tdColor);
10 },
11 function() {
12 $(this).css('backgroundColor','transparent');
13 }

461chapter 14: going further with java script

Writing More
Efficient JavaScript

14);
15 }); //end ready()

Now, the click and hover events use the same color—#F60 (since the tdColor variable
is set to the value of pColor in line 3 of the code). However, if you later decide that
you want the table cells to have a different color, just change line 3 like this:

var tdColor='#FF3';

When writing a JavaScript program, identify values that you explicitly name in
your code and turn them into variables. Likely candidates are colors, fonts, widths,
heights, times (such as 1,000 milliseconds), file names (such as image files), message
text (such as alert and confirmation messages), and paths to files (such as the path
for a link or an image). For example:

var highlightColor = '#33A';
var upArrow = 'ua.png';
var downArrow='da.png';
var imagePath='/images/';
var delay=1000;

Put these variable definitions at the beginning of your script (or if you’re using jQue-
ry, right inside the .ready() function).

Tip: It’s particularly useful to put text that you plan on printing to a page into variables. For example, error
messages like “Please supply a valid email address,” or confirmation messages like “Thank you for supply-
ing your mailing information” can be variables. When these messages are grouped together as variables
at the beginning of a script, it’s easier to edit them later (and to translate the text if you ever need to reach
an international audience).

Ternary	Operator
It’s a common programming task to set the value of a variable based on some kind of
condition. For example, say you want to set up a variable that contains text with the
login status of a user. In your script there’s a variable named login, which contains
a Boolean value—true if the user is logged in, or false if she isn’t. Here’s one way to
create a new variable for this situation:

var status;
if (login) {
 status='Logged in';
} else {
 status='Not logged in';
}

In this case, a basic conditional statement (page 79) sets the value of a variable named
status based on whether the user is logged in or not. JavaScript offers a shortcut for
this common procedure, called a ternary operator. A ternary operator provides a
one-line approach to creating a simple conditional statement. The basic format of
the ternary operator is:

(condition) ? A : B

462 javascript & jquery: the missing manual

Writing More
Efficient JavaScript

Depending upon the result of the condition, either A (if the condition is true) or B (if
the condition is false) is returned. The ? precedes the true result, while the : precedes
the false result. So, for example, the above code could be rewritten like this:

var status=(login)?'Logged in':'Not logged in';

What was once six lines of code is now a single line of code. Figure 14-6 diagrams
how this code works.

Figure 14-6:
The ternary operator lets you write
one-line conditional statements. In
this example, 1 is the condition. If it’s
true, the code immediately following
the ? mark is returned (2); if the
condition is false, then the code fol-
lowing the : is returned (3).

var status = (login) ? 'Logged in' : 'Not logged in';

if true

1

if false
3

2

The ternary operator is simply a shortcut—you don’t have to use it, and some pro-
grammers find it too dense to easily understand and prefer the easier-to-read if/else
statement. In addition, the best use of the ternary operator is for setting the value of
a variable based on a condition. It doesn’t work for every type of conditional state-
ment; for example, you can’t use it for multiple-line statements where many lines of
code are executed based on a particular condition. But even if you don’t use ternary
operators, recognizing how they work will help you understand other peoples’ pro-
grams, since you’ll probably encounter them frequently.

The	Switch	Statement
There’s more than one way to skin a conditional statement. While the ternary opera-
tor is great for assigning a value to a variable based on the results of a condition, the
switch statement is a more compact way of writing a series of if/else statements that
depend on the value of a single variable.

For example, say you ask visitors to your site to type their favorite color into a form
field, then print a different message based on the color they submit. Here’s how you
might write part of this code using the typical conditional statement.

if (favoriteColor == 'blue') {
 message = 'Blue is a cool color.';
} else if (favoriteColor == 'red') {
 message = 'Red is a warm color.';
} else if (favoriteColor == 'green') {
 message = 'Green is the color of the leaves.';
} else {
 message = 'What kind of favorite color is that?';
}

463chapter 14: going further with java script

Writing More
Efficient JavaScript

Notice that there’s an awful lot of favoriteColor == ‘some value’ in that code. In fact,
‘favoriteColor ==’ appears three times in just nine lines of code. If all you’re doing is
testing the value of a variable repeatedly, then the switch statement provides a more
elegant (and easy to read) solution. The basic structure of a switch statement is dia-
grammed in Figure 14-7.

Figure 14-7:
The switch statement is a compact way to perform differ-
ent actions based on the value of a variable. Don’t forget
the break statement at the end of each case—the break
statement lets you exit the switch statement.

switch (variable) {

 case 'value 1':

 //perform some action when

 //when variable=='value 1'

 break;

 case 'value 2':

 //perform some action when

 //when variable=='value 2'

 break;

 case 'value 3':

 //perform some action when

 //when variable=='value 3'

 break;

 default:

 //perform action if none

 //of the above are true

}

1

3

4

2

The first line of a switch statement begins with the keyword switch, followed by a
variable name inside parentheses, followed by an opening brace symbol. Essentially,
this code says, “Let’s get the value of this variable and see if it matches one of several
other values.” Each test is called a case, and a switch statement has one or more cases.
In Figure 14-7, there are three cases, numbered 1–3. The basic structure of a case
looks like this:

case value1:
 // do something
 break;

The case keyword indicates the beginning of a case; it’s followed by some value and
then a colon. This line is shorthand for the longer if (variable==’value1’). The value
can be a number, string, or Boolean (or a variable containing a number, string, or
Boolean), so if you want to test whether the variable is equal to 37, for example, then
the case would look like this:

464 javascript & jquery: the missing manual

Writing More
Efficient JavaScript

case 37:
 //do something
 break;

To test whether the variable is true or not, you’d write this:
case true:
 //do something
 break;

After the first line, you add the statements you want to execute if the variable match-
es the test case value. Finally, you add a break; statement. This step is important—the
break; statement exits the switch statement. If you leave it out, the JavaScript inter-
preter will skip to the next test case and see if it matches.

Leaving out the break; statement can cause problems, especially if you use the final
default keyword with a switch statement (number 4 in Figure 14-7). The default
statement applies if none of the test cases is true—it’s the equivalent of the final else
clause in a conditional statement. If you leave out the break; statement in one of the
earlier test cases, then if one of the cases is true, the JavaScript interpreter will also
run whatever code is listed in the default statement.

Here’s how the switch statement can help with the if/else if code on page 463:
switch (favoriteColor) {
 case 'blue':
 message = 'Blue is a cool color.';
 break;
 case 'red':
 message = 'Red is a warm color.';
 break;
 case 'green':
 message = 'Green is the color of the leaves.';
 break;
 default:
 message = 'What kind of favorite color is that?';
}

This code is the equivalent to the if/else if code, but is more compact and easier to
read.

In fact, you can also put more than one case statement right after one another (and
intentionally exclude the default keyword) if you want to run the same code for sev-
eral values. For example:

switch (favoriteColor) {
 case 'navy':
 case 'blue':
 case 'indigo':
 message = 'Blue is a cool color.';
 break;

 case 'red':
 message = 'Red is a warm color.';
 break;
 case 'green':
 message = 'Green is the color of the leaves.';

465chapter 14: going further with java script

Creating Fast-
Loading JavaScript

 break;
 default:
 message = 'What kind of favorite color is that?';
}

This is similar to using if (favoriteColor == ‘navy’ || favoriteColor == ‘blue’ || favor-
iteColor == ‘indigo’) in an if/else statement.

Creating Fast-Loading JavaScript
Once you starting using external JavaScript files for your scripts, your visitors should
start to feel like your site is faster. Thanks to a browser’s cache, once your external
JavaScript files download for one page of your site, they don’t have to be downloaded
a second time for a different page. However, there’s still another way to make your
site download more quickly: compressing your external JavaScript files.

Note: Files sent securely via SSL (secure socket layer) are never cached. So if people access the pages of
your site using https:// as the protocol (for example, https://www.oreilly.com), then any files they down-
load, including external JavaScript files, must be downloaded every time they’re needed.

To make a script more understandable, programmers usually insert empty spaces,
carriage returns, and comments to explain what the script does. These are all im-
portant additions for the programmer, but not necessary for the web browser, which
can happily understand JavaScript without carriage returns, tabs, extraneous spaces,
or comments. Using a compression program, you can minimize the space your Ja-
vaScript takes up. The version of jQuery recommended in this book, for example, is
minified, and is nearly half the file size of the uncompressed version.

There are several programs aimed at making JavaScript more petite. Douglas Crock-
ford’s JSMin (http://crockford.com/javascript/jsmin.html) is one example, and Dean
Edward’s Packer (http://dean.edwards.name/packer) is another. However, we’d rec-
ommend the same compressor Yahoo uses (and jQuery), because it achieves great
file size savings without changing your code (some compressors actually rewrite
your code and in some cases can break your scripts!).

Yahoo’s JavaScript compressor, YUI Compressor, lives at http://developer.yahoo.com/
yui/compressor. In the last edition of this book, we gave instructions that only a com-
puter hacker would love: They involved downloading a JAR file (Java) as well as
using the dreaded command line. Fortunately, some friendly and enterprising fellow
has made an online version you can use by either pasting in the JavaScript code you
wish to minimize or even selecting a JavaScript file on your computer and uploading
it to the website.

466 javascript & jquery: the missing manual

Creating Fast-
Loading JavaScript

1. Launch a web browser and visit http://www.refresh-sf.com/yui/.
This is the site for the Online YUI Compressor.

2. Click the File(s) link.
Alternatively, you can just copy the JavaScript code from your text editor and
paste it into the large text box at the site’s homepage; you can then skip to step 4.

3. Click the Choose File button and locate the external JavaScript file on your
computer.
The file must contain only JavaScript. For example, you can’t select a HTML file
that also has JavaScript programming in it.

4. Select the “Redirect to gzipped output” box (just above the Compress button).
This option lets you download the minimized code in a new, zipped file. This
will be your new, compressed, external JavaScript file, which you can save to
your site.

5. Click the Compress button.
The website processes your code and downloads the compressed file to your
computer. You can then rename this file (since it’s always saved as min.js), and
put it into your site for use. The Online YUI Compressor site provides a nice re-
port after you compress a file, listing the original file size, the new, compressed
file size, and a percentage that represents how much smaller the new file is.

Warning: Make sure you keep the original JavaScript file on hand after using the Online YUI Compres-
sor, since the new, compressed version is unreadable and you’ll never be able to edit it if you wish to
make changes to your original code.

467

chapter
15

Troubleshooting and
Debugging

Everybody makes mistakes, but in JavaScript, mistakes can keep your programs
from running correctly—or at all. When you first start out with JavaScript,
you’ll probably make a lot of mistakes. Trying to figure out why a script isn’t

behaving the way it should can be frustrating, but it’s all a part of programming.
Fortunately, with experience and practice, you’ll be able to figure out why an error
has occurred and how to fix it.

This chapter describes some of the most common programming mistakes, and, more
importantly teaches you how to diagnose problems in your scripts—debug them, as
programmers say. In addition, the tutorial will take you step-by-step through debug-
ging a problematic script.

Top JavaScript Programming Mistakes
There are countless ways a program can go wrong, from simple typos to more subtle
errors that only pop up every now and again. However, there are a handful of mis-
takes that routinely plague beginning (and even advanced) JavaScript programmers.
Go over the list in this section, and keep it in the back of your mind when pro-
gramming. You’ll probably find that knowing these common mistakes makes it a lot
easier to identify and fix problems in your own programs.

Non-Closed	Pairs
As you’ve noticed, JavaScript is filled with endless parentheses, braces, semicolons,
quotation marks, and other punctuation. Due to the finicky nature of computers,
leaving out a single punctuation mark can stop a program dead in its tracks. One

468 javascript & jquery: the missing manual

Top JavaScript
Programming
Mistakes

of the most common mistakes is simply forgetting to include a closing punctuation
mark. For example, alert(‘hello’ ; will produce an error because the closing parenthe-
sis is missing: alert(‘hello’);.

Leaving off a closing parenthesis will cause a syntax error (see the box on page 471).
This kind of “grammatical” error prevents scripts from running at all. When you
give your script a test run, the browser lets you know if you’ve made a syntax er-
ror, but, confusingly, they all describe the problem differently. In the Firefox error
console (page 35), you get an error message like “missing) after argument list”; In-
ternet Explorer 9’s console (page 37) reports this error as “Expected ‘)’”; Chrome’s
error consoles reads “Uncaught SyntaxError: Unexpected token ;”; and Safari’s error
console (page 38) gives you the less-helpful message “SyntaxError: ParseError.” As
mentioned on page 39, Firefox tends to provide the most understandable error mes-
sages, so it’s a good browser to start with when trying to figure out why a script isn’t
working (see Figure 15-1).

Figure 15-1:
Firefox’s Error Console lists
all JavaScript errors that
the browser encounters.
You can display the
console by choosing
Web Developer→Error
Console (Ctrl+Shift+J) on
Windows, or Tools→Web
Developer→Error Console
(⌘-Shift-J) on Macs. Since
the console lists the errors
it has encountered on
all pages, you’ll want to
frequently erase the list by
clicking the Clear button
(circled).

The syntax error in alert(‘hello’ ; is pretty easy to spot. When you’ve got a nest of
parentheses, though, it’s very easy to leave off a closing parenthesis and difficult to
spot that error at a glance. For example:

if ((x>0) && (y<10) {
 // do something
}

In this example, the final closing parentheses for the conditional statement is miss-
ing—the one that goes directly after (y<10). The first line should really be: if ((x>0)
and (y<10)) {. Again, Firefox provides the clearest description of the problem: “miss-
ing) after condition.” Table 14-1 provides a list of Firefox’s error console syntax error
messages.

469chapter 15: troubleshooting and debugging

Top JavaScript
Programming

Mistakes
You’ll encounter a syntax error when you forget to include the second quote mark
as well. For example, alert(‘hello); produces an error because the final single quote
is missing: alert(‘hello’);. In Firefox, if you forget to include both quote marks, you’ll
get an “unterminated string literal” error, while Internet Explorer reports an “unter-
minated string constant”; Safari again provides the less-than-useful “SyntaxError:
Parse Error” message.

Braces also come in pairs, and you’ll use them in conditional statements (page 79), in
loops (page 93), when creating JavaScript object literals (page 145), and with JSON
(page 370):

if (score==0) {
 alert('game over');

In this example, the closing } is missing, and the script will produce a syntax error.

One approach to overcome the problem of missing closing punctuation marks is to
always add them before adding other programming. For example, say you want to
end up with the following code:

if ((name=='bob') && (score==0)) {
 alert('You lose (but at least you have a great name');
}

Start by typing the outside elements first, creating a basic skeleton for the condition
like this:

if () {

}

At this point, there’s not much code, so it’s easy to see if you’ve mistakenly left out
any punctuation. Next, add more code, bit by bit, until the program is in place. The
same is true when creating a complex JavaScript object literal like the one used to set
the options for the Validation plug-in described on page 278, or like a JSON object
described on page 370. Start with the basic structure:

var options = {

};

Then add more structure:
var options = {
 rules : {

 },
 messages : {

 }
};

470 javascript & jquery: the missing manual

Top JavaScript
Programming
Mistakes

Then finish the object:
var options = {
 rules : {
 name : 'required',
 email: 'email'
 },
 messages : {
 name : 'Please type your name',
 email: 'Please type your e-mail address.'
 }
};

This approach lets you check your work through various steps and makes it a lot
easier to identify any mistakes in punctuation.

Table 15-1. Firefox’s Error Console (discussed on page 35) provides the clearest description of syntax
error messages. When a script isn’t working, preview it in Firefox and review the Error Console. Here are
a few of the most common error messages and what they mean.

Firefox error message Explanation
Unterminated string literal Missing opening or closing quote mark:

var name = Jane' ;
Error also appears with mismatched quote marks:
var name = 'Jane";

Missing) after argument list Missing closing parenthesis when calling a function or method:
alert('hello' ;

Missing) after condition Missing closing parenthesis within a conditional statement:
if (x==0

Missing (before condition Missing opening parenthesis within a conditional statement:
if x==0)

Missing } in compound
statement

Missing closing brace as part of conditional loop:
if (score == 0) { alert('game over'); // missing }
on this line

Missing } after property list Missing closing brace for JavaScript object:
var x = { fName: 'bob', lName: 'smith' // missing
} on this line

Syntax Error General problem that prevents JavaScript interpreter from
reading the script.

Missing ; before statement Lets you know when you’ve run two statements together on
a single line, without separating them with a semicolon. You’ll
also see this when you incorrectly nest quotation marks:
var message='There's an error here.';

Missing variable name Appears if you attempt to use a JavaScript reserved word (see
page 47) for a variable name:
var if="Syntax error.";

471chapter 15: troubleshooting and debugging

Top JavaScript
Programming

Mistakes

UP TO SPEED

Types of Errors
There are three basic categories of errors that you’ll en-
counter as you program JavaScript. Some of these errors
are immediately obvious, while others don’t always rear
their ugly heads until the script is up and running.

Syntax	Errors. A syntax error is essentially a gram-
matical mistake that makes a web browser’s JavaS-
cript interpreter throw up its hands and say, “I give
up.” Any of the errors involving a missing closing
parenthesis, brace, or quote mark generates a syntax
error. The web browser encounters syntax errors im-
mediately, as it reads the script, so the script never
has a chance to run. An error message for a syntax er-
ror always appears in a web browser’s error console.

Runtime	 errors. After a browser reads a script’s
code successfully and the JavaScript interpreter in-
terprets it, it can still encounter errors. Even if the
program’s syntax is fine, other problems might pop
up as the program runs—called runtime errors. For
example, say you define a variable named message
at the beginning of a script; later in the script, you add
a click function to an image so an alert box appears
when the image is clicked. Say the alert code for this
example looks like this: alert(MESSAGE);. There’s
nothing wrong with this statement’s syntax, but it
calls the variable MESSAGE instead of lowercase mes-
sage. As mentioned on page 473, JavaScript is case-
sensitive, so MESSAGE and message refer to two dif-
ferent variables. When a visitor clicks the image, the
JavaScript interpreter looks for the variable MESSAGE
(which doesn’t exist) and generates a runtime error.

Another common runtime error occurs when you try to ac-
cess an element on a page that either doesn’t exist or the
browser hasn’t yet read into its memory. See the discussion

of jQuery’s $(document).ready() function on page 169 for
more detail on this problem.

Logic	errors. Sometimes even though a script seems
to run, it doesn’t produce the results you’re after. For
example, you may have an if/else statement (page
79) that performs step A if a condition is true or step
B if it’s false. Unfortunately, the program never seems
to get to step B, even if you’re sure the condition is
false. This kind of error happens when you use the
equality operator incorrectly (see page 50). From
the JavaScript interpreter’s perspective, everything is
technically correct, but you’ve made a mistake in the
logic of your programming that prevents the script
from working as planned.

Another example of a logic error is an infinite loop, which
is a chunk of code that runs forever, usually causing your
programming to hang up and sometimes even crashing the
web browser. Here’s an example of an infinite loop:

for (var i=1; i>0; i++) {

 // this will run forever

}

In a nutshell, this loop will run as long as the test condition
(i>0) is true. Since i starts out with a value of 1 (var i=1),
and each time it goes through the loop i is increased by 1
(i++), the value of i will always be greater than 0. In other
words, the loop never stops. (Turn to page 97 if you need
a refresher on for loops.)

Logic errors are amongst the most difficult to uncover.
However, with the debugging techniques described on
page 477, you should be able to uncover just about any
problem you encounter.

472 javascript & jquery: the missing manual

Top JavaScript
Programming
Mistakes

Quotation	Marks
Quote marks often trip up beginning programmers. Quote marks are used to create
strings of letters and other characters (see page 43) to use as messages on the page,
or as variables in a program. JavaScript, like other programming languages, lets you
use either double or single quote marks to create a string. So,

var name="Jane";

is the same as:
var name='Jane';

As you read in the previous section, you must include both the opening and closing
quote marks, or you’ll end up with an “Unterminated string literal” error in Firefox
(and all other browsers will give up on your script as well). In addition, as you read
on page 44, you must use the same type of quote mark for each pair—in other words,
both single quotes or both double quotes. So var name=‘Jane” will also generate an
error.

Another common problem can arise with the use of quotations within a string. For
example, it’s very easy to make the following mistake:

var message='There's an error in here.';

Notice the single quote in There’s. The JavaScript interpreter treats that quote mark
as a closing quote, so it actually sees this: var message=‘There’, and the rest of the
line is seen as an error. In the Firefox error console, you’ll get the message “Missing
; before statement,” because Firefox thinks that second quote is the end of a simple
JavaScript statement and what follows is a second statement.

You can get around this error in two ways. First, you can mix and match double and
single quotes. In other words, you can put double quotes around a string with single
quotes, or you can put single quotes around a string containing double quotes. For
example, you can fix the above error this way:

var message="There's no error in here.";

Or, if the string contains double quotes:
var message='He said, "There is no problem here."';

Another approach is to escape quote marks within a string. Escaping quote marks
is discussed in greater detail in the box on page 44, but here’s a recap: To escape a
character, precede it with a forward slash, like this:

var message='There\'s no error here.';

The JavaScript interpreter treats \’ as a single quote character and not as the symbol
used to begin and end strings.

Using	Reserved	Words
As listed on page 47, the JavaScript language has many words that are reserved for
its private use. These words include words used in the language’s syntax like if, do,
for, and while, as well as words used as part of the browser object, like alert, location,
window, and document. These words are not available to use as variable names.

473chapter 15: troubleshooting and debugging

Top JavaScript
Programming

Mistakes
For example, the following code generates a syntax error:

var if = "This won't work.";

Since if is used to create conditional statements—as in if (x==0)—you can’t use it as
a variable name. Some browsers, however, won’t generate an error if you use words
that are part of the Browser Object Model for your variable names. For example,
document refers to the HTML document. For example, look at the following code:

var document='Something strange is happening here.';
alert(document);

Firefox, Safari, and Opera don’t generate an error, but instead pop up an alert with
the text “[object HTMLDocument],” which refers not to the HTML document itself.
In other words, those browsers won’t let you overwrite the document object with a
string. Chrome and Internet Explorer 9 generate error messages and won’t display
a pop up alert.

Single	Equals	in	Conditional	Statements
Conditional statements (page 79) provide a way for a program to react in different
ways depending upon a value of a variable, the status of an element on a page, or
some other condition in the script. For example, a conditional statement can display
a picture if it’s hidden or else hide it if it’s visible. Conditional statements only make
sense, however, if a particular condition can be true or false. Unfortunately, it’s easy
to create a conditional statement that’s always true:

if (score=0) {
 alert('game over');
}

This code is supposed to check the value stored in the variable score—if the value is
0, then an alert box with the message “game over” should appear. However, in this
case, the alert message will always display, no matter what value is stored in score
prior to the conditional statement. That’s because a single equal sign is an assignment
operator, so score=0 stores the value 0 in score. The JavaScript interpreter treats an
assignment operation as true, so not only does the code above always pop up the
alert box, it also rewrites the value of score to 0.

To avoid this error, make sure to use double equal signs when testing whether two
values are the same:

if (score==0) {
 alert('game over');
}

Case-Sensitivity
Remember that JavaScript is case-sensitive, meaning that the JavaScript interpreter
tracks not only the letters in the names of variables, functions, methods, and key-
words, but also whether the letters are uppercase or lowercase. So alert(‘hi’) is not
the same as ALERT(‘hi’) to the JavaScript interpreter. The first, alert(‘hi’), calls the

474 javascript & jquery: the missing manual

Top JavaScript
Programming
Mistakes

browser’s built-in alert() command, while the second ALERT(‘hi’) attempts to call a
user-defined function named ALERT().

You can run into this problem if you use the long-winded DOM selection methods
getElementsByTagName() or getElementById(), since they use both upper and lower-
case letters (another good reason to stick with jQuery). Likewise, if you include both
upper and lowercase letters in variable and function names, you may run into this
problem from time to time.

If you see an “x is not defined” error message (where x is the name of your variable,
function, or method), mismatched case may be the problem.

Incorrect	Path	to	External	JavaScript	File
Another common mistake is incorrectly linking to an external JavaScript file. Page
27 discusses how to attach an external JavaScript file to a web page. Basically, you use
the <script> tag’s src property to point to the file. So in the HTML page, you’d add
the <script> tag to the <head> of the document like this:

<script src="site_js.js"></script>

The src property works like a link’s href property—it defines the path to the JavaS-
cript file. As mentioned in the box on page 28, there are three ways you can point to
a file: absolute links (http://www.site.com/site_js.js), root-relative links (/site_js.js),
and document-relative links (site_js.js).

A document-relative path describes how a web browser gets from the current page
(the web page) to a particular file. Document-relative links are commonly used be-
cause they let you test your web page and JavaScript file right on your own computer.
If you use root-relative links, you’ll need to set up a web server on your own com-
puter to test your pages (or move them up to your web server to test them).

You can read more about how link paths work on page 28. But, in a nutshell, if you
find that a script doesn’t work and you’re using external JavaScript files, double-
check to make sure you’ve specified the correct path to the JavaScript file.

Tip: If you’re using the jQuery library and you get the error “$ is not defined” in the Firefox error console,
you probably haven’t correctly linked to the jquery.js file (see page 122 for more).

Incorrect	Paths	Within	External	JavaScript	Files
Another problem related to file paths occurs when using document-relative paths
in an external JavaScript file. For example, you might create a script that displays
images on a page (like a slideshow or just a “random image of the day” script). If the
script uses document-relative links to point to the images, you can run into trouble
if you put that script into an external JavaScript file. Here’s why: When an external
JavaScript file is loaded into a web page, its frame of reference for document-relative

475chapter 15: troubleshooting and debugging

Top JavaScript
Programming

Mistakes
paths is the location of the web page itself. So, any document-relative paths you in-
clude in the JavaScript file must be relative to the web page and not the JavaScript file.

Here’s a simple example to illustrate this problem. Figure 15-2 represents the struc-
ture of a very simple website. There are two web pages (page.html and about.html),
four folders (libs, images, pages, and about), an external JavaScript file (site_js.js in-
side the libs folder) and an image (photo.jpg in the images folder.) Say the site_js.js
file references the photo.jpg file—perhaps to preload the image (page 209), or display
it dynamically on a web page.

Figure 15-2:
Document-relative paths depend on both the location of
the file that the path starts at as well as the location of the
destination file. For example, the document-relative path from
the site_js.js file to the photo.jpg file (#1) is ../images/photo.
jpg; the path to the same file from the page.html file (#2) is
images/photo.jpg; and the path from the about.html file (#3)
is ../../images/photo.jpg.

root folder

photo.jpg

site_js.js

page.html

images

libs

about.html

pages

about

12

3

From the site_js.js file’s perspective, a document-relative path to the photo.jpg file
is ../images/photo.jpg (#1 in Figure 14-2). The path tells the browser to exit the libs
folder (../), enter the images folder (images/), and select the photo.jpg file. However,
from the perspective of the page.html file, the path to the photo.jpg file (#2 in Figure
14-2) is just images/photo.jpg. In other words, the path to the same photo differs
between the two files.

If you want to use the site_js.js script within the page.html file, then, you have to
use path #2 in the site_js.js file to reference the location of photo.jpg (that is, specify
a path relative to page.html). By the same token, you can’t use the site_js.js file in a
web page located in another directory in your site, since the relative path would be
different for that file (#3 in Figure 15-2).

There are a few ways around this problem. First, well, you may never encounter
it—you may not find yourself listing paths to other files in your JavaScript files. But
if you do, you can use root-relative paths (see page 28), which are the same from
any page in the site. Alternatively, you can define the path to the files within each
web page. For example, you can link to the external JavaScript file (see page 27), and

476 javascript & jquery: the missing manual

Top JavaScript
Programming
Mistakes

then, in each web page, define variables to hold document-relative paths from the
current web page to the correct file.

Finally, you could use an approach like the one used in the slideshow on page 222.
The paths come from the web page and are embedded within links on the page—the
JavaScript simply pulls the paths out of the HTML. As long as those paths work in
the HTML, they’ll work in a script as well.

Disappearing	Variables	and	Functions
You may occasionally encounter an “x is not defined” error, where x is either the
name of a variable or a function you’re trying to call. The problem may just be that
you mistyped the name of the variable or function, or used the wrong case. However,
if you look through your code and can clearly see that the variable or function is
defined in your script, then you may be running into a “scope” problem.

Variable and function scope is discussed in greater detail on page 105, but in a nut-
shell, if a variable is defined inside of a function, it’s only available to that function
(or to other functions defined inside that function). Here’s a simple example:

1 function sayName(name) {
2 var message = 'Your name is ' + name;
3 }
4 sayName();
5 alert(message); // error: message is not defined

The variable message is defined within the function sayName(), so it only exists for
that function. Outside the function, message doesn’t exist, so an error is generated
when the script tries to access the variable outside the function (line 5).

You may also encounter this error when using jQuery. On page 169, you read about
the importance of the $(document).ready() function for jQuery. Anything inside that
function only runs once the page’s HTML is loaded. You’ll run into problems if you
define variables or functions within the $(document).ready() function and try to ac-
cess them outside of it, like this:

$(document).ready(function() {
 var msg = 'hello';
});
alert(msg); // error: msg is not defined

So, when using jQuery, be sure to put all of your programming inside the $(docu-
ment).ready() function:

$(document).ready(function() {
 var msg = 'hello';
 alert(msg); // msg is available
});

477chapter 15: troubleshooting and debugging

Debugging with
Firebug

UP TO SPEED

Programming Tips to Reduce Errors
The best way to deal with errors and bugs in your programs
is to try to stop them as early as possible. It can be really
difficult to track down the cause of errors in a program if
you wait until you’ve written a 300-line script before testing
it in a web browser. The two most important tips to avoid-
ing errors are:

Build	a	script	in	small	chunks. As you’ve probably
figured out by now, JavaScript programs can be dif-
ficult to read, what with all of the },), ‘, ifs, elses, func-
tions, and so on. Don’t try to write an entire script in
one go (unless you’re really good, the script is short,
or you’re feeling lucky). There are so many ways to
make a mistake while programming, and you’re bet-
ter off writing a script in bits.

For example, say you want to display the number of let-
ters typed into a “Comments” box, right next to the box.
In other words, as a visitor types into the field, a running
total of the number of letters typed appears next to the box.
(Some sites do this when they limit the amount a visitor
can type into a field—say, 300 letters.) This task is pretty
easy JavaScript, but it involves several steps: responding
to the keydown event (when a visitor types a letter in the

field), reading the value of that field, counting the numbers
of characters in the field, and then displaying that num-
ber on the page. You can try to write this script in one go,
but you can also write the code for step 1 (responding to
a keydown event) and then test it immediately in a web
browser (using the alert() command or Firebug’s console.
log() function, described on the next page, can help you
see the results of a keydown event). If it works, you can
then move on to step 2, test it, and so on.

As you gain more experience, you won’t need to test such
small steps. You can write a few steps at once, and then
test that chunk.

Test	frequently. You should also test your script in a
web browser frequently. At a minimum, test after you
complete each chunk of the program, as suggested
in the previous point. In addition, you should test the
script in different browsers—preferably Internet Ex-
plorer 7, 8, and 9; Firefox 5 and 6; the latest versions
of Chrome and Safari; and whatever other browsers
you think your site’s visitors might be using.

Debugging with Firebug
If you haven’t been using Firebug, you’ve been missing out on one of the best tools a
web designer could have. It’s free, easy to install and use, and can help you improve
your HTML, CSS, and JavaScript. Firebug is an extension for Firefox that adds a
bunch of helpful diagnostic tools to let you pick apart your HTML, CSS, and (most
importantly for this book) JavaScript programs.

Installing	and	Turning	On	Firebug
You can find the extension at www.getfirebug.com, or from the Mozilla Add-Ons site.
Here’s how to install it:

478 javascript & jquery: the missing manual

Debugging with
Firebug

1. Visit http://addons.mozilla.org/firefox/addon/firebug using Firefox, and click
the “Add to Firefox” button.
To protect you from accidentally installing a malicious extension, Firefox stops
your first attempt at installing the extension. A Software Installation window
appears, warning you that malicious software is bad (oh, really?). Don’t worry;
Firebug is perfectly safe.

2. Click the Install Now button.
Firefox installs the extension, but it won’t work until you restart Firefox. A small
window appears explaining that very thing.

3. Click the Restart button.
Voila, Firebug is installed and ready to use, but first you need to open it.

4. On Windows, choose Firefox→Web Developer→Firebug→Open Firebug or
Press F12; on Macs, choose Tools→ Web Developer→Firebug→Enable Fire-
bug.
Now you can begin using Firebug to help you debug your scripts.

Viewing	Errors	with	Firebug
Firebug provides an easier and more useful way to view errors than Firefox’s built-in
error console. With Firebug, when you load a web page with JavaScript errors, you’ll
see a counter in the upper right listing the number of errors encountered (see Figure
15-3). Click the Firebug icon to open the Firebug console, which lists any JavaScript
errors.

The errors listed in the console are the same as Firefox’s error console (Figure 15-1),
but Firebug only lists errors for the page you’re currently viewing (unlike the error
console, which lists all errors on all pages Firefox has visited). Because Firebug pro-
vides such easy access to error information, you’ll probably find yourself skipping
the Firefox error console entirely once you’ve experienced Firebug.

479chapter 15: troubleshooting and debugging

Debugging with
Firebug

Figure 15-3:
Firebug’s console lists
any JavaScript errors
Firefox has encoun-
tered on the current
page. To see the
exact line of code on
which the error was
encountered, click the
code snippet under
the error (circled).
Firebug then switches
from the console
tab to the script tab
and highlights the
line where the error
happened.

View console

List of errors

Number of errors on page
Open Firebug

Using	console.log()	to	Track	Script	Progress
Once a script begins to run, it’s kind of like a black box. You don’t really know what’s
going on inside the script and only see the end result, like a message on the page, a
pop-up window, and so on. You can’t always tell exactly whether a loop is working
correctly or see the value of a particular variable at any point in time.

JavaScript programmers have long used the alert() method (page 29) to pop up a
window with the current value of a variable. For example, if you want to know what
value is being stored in the variable elementName as a loop is running, you can insert
an alert command inside the loop: alert(elementName);. That’s one way to look into
the “black box” of the script. However, the alert box is pretty intrusive: You have to
click it to close it, and in a loop that might run 20 times, that’s a lot of pop-up alerts
to close.

480 javascript & jquery: the missing manual

Debugging with
Firebug

Firebug provides a better way to look into your program. The Firebug console not
only lists errors (see previous section), but can also be used to output messages from
the program. The console.log() function works similar to the document.write() func-
tion (page 31), but instead of printing a message to the web page, console.log() prints
a message to the console.

Tip: All current browsers support the console.log() method. So you can use it in Chrome, Safari, Internet
Explorer, and Opera’s consoles as discussed in Chapter 1.

For example, you could print the current value of the variable elementName to the
console using this code:

console.log(elementName);

Unlike the alert() method, this method won’t interrupt your program’s flow—you’ll
just see the message in the console.

To make the log message more understandable, you can include a string with addi-
tional text. For example, if you have a variable named name and you want to deter-
mine what value is stored in name at some point in your program, you can use the
console.log() function like this:

console.log(name);

But if you wanted to precede the name with a message, you can write this:
console.log('User name: %s', name);

In other words, you first pass a string to the log() function, followed by a comma and
the name of the variable whose value should be displayed. The special %s is way of
saying “substitute the variable value with me.” In other words, %s gets replaced with
the value of name, so you’ll end up with a message in the console like “User name:
Bob.”

You can add more than one variable to the message; just include one %s for each
variable. For example, if you have two variables, name and score, and want to print
both along with a custom log message, you can do the following:

console.log('%s has a score of %s', name, score);

You can use %s for numeric values, but Firebug provides two other tokens—%d and
%f—to represent integers (like 1, 2, and 10) and floating point numbers (like 1.22
and 2.4444). Using one of the two numeric tokens means the numbers are printed in
a different color—just an easy way to tell them apart from the rest of the text.

For example, you can rewrite the line of code above to display the number stored in
the variable score:

console.log('%s has a score of %d', name, score);

The log() function is merely a way to give you some information about the function-
ing of your script as you develop it. Once your program is finished and working, you
should remove all of the console.log() code from your script. Web browsers that don’t
understand the console.log() method (like older versions of Internet Explorer) gener-
ate errors when they encounter the log() function.

481chapter 15: troubleshooting and debugging

Debugging with
Firebug

Tutorial:	Using	the	Firebug	Console
In this tutorial, you’ll learn how to use the console.log() function to see what’s going
on inside your program. You’ll create a script that displays the number of characters
typed into a text box on a form.

Note: See the note on page 29 for information on how to download the tutorial files.

To get started, first install Firebug in Firefox using the instructions on page 477 (re-
member, Firebug only works with the Firefox web browser).

1. Open the file console.html in a text editor.
This script uses the jQuery library. The external jQuery file is already attached
to the page, and the opening and closing <script> tags are in place. You’ll start
by adding jQuery’s $(document).ready() function.

2. Between the <script> tags near the top of the page, add the code in bold be-
low:
<script>
$(document).ready(function() {

}); // end ready
</script>

You learned about the basic $(document).ready() function on page 147, which
makes the browser load all of the page’s code before starting to run any JavaS-
cript. You’ll first use the Firebug log() function to simply print out a message
that the script has executed the .ready() function.

3. Add the bolded code below to the script:
<script>
$(document).ready(function() {
 console.log('READY');
}); // end ready
</script>

The console.log() function runs wherever you place it in the script. In other
words, after this page’s HTML is loaded (that’s what the ready() function waits
for), Firebug writes “READY” to the Firebug console. Adding the ready() func-
tion is a pretty common and basic move, so you may not always add a console.
log() function here, but for this tutorial, you’ll add one to see how the log() func-
tion works. In fact, you’ll be adding a lot of log messages to this page to get the
hang of the console.log() function.

4. Save the file, and open it in Firefox. If Firebug isn’t already open, click the
Firebug icon in the upper-right corner of Firefox’s tool bar.
You can also choose FirefoxTools→Web Developer→Firebug→Open Firebug to
see the Firebug console.

482 javascript & jquery: the missing manual

Debugging with
Firebug

The word READY should appear in the console (circled in Figure 15-4). The
script you’re creating will display the number of characters typed into a form’s
text field each time your visitor types a character. To accomplish this, you’ll add
a keyup event (page 162) to that text box. During each step of this script, you’ll
also add a console.log() function, to clue you in to what’s happening.

Figure 15-4:
If a number appears to
the left of the Firebug
icon in the upper-right
corner of Firefox’s tool
bar there’s a JavaScript
error (probably just a
typo). Open Firebug
(click the Firebug icon)
to view the error in the
console.

5. After the line of code you added in step 3, add the following:
$('#comments').keyup(function() {
 console.log('Event: keyup');
}); // end keyup

The <textarea> tag on this page has an ID of comments, so we can select that
element using jQuery ($(‘#comments’)) and add a function to the keyup event
(see page 162 if you need a refresher on adding events). In this case, the console.
log() function is just printing a status message to the Firebug console telling
you each time the keyup event is triggered. This function is an easy way to see
whether an event function is actually running or something’s preventing the
event from happening.

483chapter 15: troubleshooting and debugging

Debugging with
Firebug

Save the page; reload it in Firefox and type a few characters into the text box.
Make sure Firebug’s console is open, and you should see several lines (one for
each character you typed) of ‘Event: keyup’, Now that the keyup event is work-
ing, you might want to retrieve the contents of the text box and store it in a
variable. To be sure you’re getting the information you’re after, you’ll print the
contents of the variable to the console.

6. Add lines 3 and 4 below to the code you typed in step 5:
1 $('#comments').keyup(function() {
2 console.log('Event: keyup');
3 var text = $(this).val();
4 console.log('Contents of comments: %s',text);
5 }); // end keyup

Line 3 retrieves the value from the text box and stores it inside a variable named
text (see page 261 for more information on extracting the value from a form
field). Line 4 writes a message to the console. In this case, it combines a string
‘Contents of comments: ’ and the value currently stored in the text box. When
a program isn’t working correctly, a very common diagnostic step is to print
out the values of variables in the script to make sure the variable contains the
information you’re expecting it to have.

7. Save the file, reload it in Firefox, and type some text into the comments box.
The console should now display the contents in the comments box each time
you type a letter into the field. By now you should be getting the hang of the
console, so you’ll add one more message, and then finish this script.

8. Edit the keyup event function by adding two more lines (5 and 6 below):
1 $('#comments').keyup(function() {
2 console.log('Event: keyup');
3 var text = $(this).val();
4 console.log('Contents of comments %s',text);
5 var chars = text.length;
6 console.log('Number of characters: %d',chars);
7 }); // end keyup

Line 5 counts the number of characters stored inside the text variable (see page
425 for more on the length property) and stores it inside the variable chars. Just
to make sure the script is correctly calculating the number of characters, use the
log() function (line 6) to print a message to the console. Since the variable chars
holds a number, you use the %d token to display an integer value.
There’s just one last thing to do: Finish the script so it prints the number of
characters typed so your visitor can see it.

9. Add one last line to the end of the keyup event function (line 10), so the com-
pleted script for the page looks like this:
 1 <script>
 2 $(document).ready(function() {
 3 console.log('READY');
 4 $('#comments').keyup(function() {

484 javascript & jquery: the missing manual

Debugging with
Firebug

 5 console.log('Event: keyup');
 6 var text = $(this).val();
 7 console.log('Contents of comments: %s',text);
 8 var chars = text.length;
 9 console.log('Number of characters: %d',chars);
10 $('#count').text(chars + " characters");
11 }); // end keyup
12 }); // end ready
13 </script>

10. Save the file, and preview it in Firefox.
Make sure Firebug is open, and the page and console should now look some-
thing like Figure 15-5. You’ll find a finished version of this tutorial—complete_
console.html—in the chapter15 folder in the tutorials folder.

Note: Once you have a functioning program, you should remove all console.log() code from your script.
The log() function will generate errors in some browsers.

Figure 15-5:
The Firebug console is a great
way to print out diagnostic
information as a program is
running. You can also group
together a series of log entries
(for example, to group all the
log messages printed during
a loop) by adding console.
group() before the first console.
log() message in the group,
and console.groupEnd() after
the last message. These same
functions work in Safari and
Chrome’s consoles (but not in
Opera or Internet Explorer 9).

485chapter 15: troubleshooting and debugging

Debugging with
Firebug

More	Powerful	Debugging
The Firebug console is a great way to print out messages so you can see what’s going
on when a program runs. But sometimes a program zips by so quickly it’s hard to see
what’s going on during each step. You need a way to slow things down. Fortunately,
Firebug includes a powerful JavaScript debugger. It lets you step through a script line
by line so you can see what’s happening at each step of the program.

Note: You’ll also find JavaScript debuggers with similar functionality in Chrome, Opera, Safari, and
Internet Explorer 9.

Debugging is the process of fixing an incorrectly functioning program—getting the
bugs out. To really understand how a program is functioning (or malfunctioning),
you need to see how the program works, step-by-step.

To use the debugger, you mark certain lines of code as breakpoints. A breakpoint is
a spot where the JavaScript interpreter stops running and waits. You can then use
controls inside Firebug that let you run a program one line at a time. In this way,
you can see exactly what’s happening at any particular line. Here’s the basic process.

1. Open a web page in Firefox.
You need Firebug installed and enabled as described on page 477.

2. Open Firebug.
Click the Firebug icon (in the upper-right corner of the Firefox tool-
bar). Alternatively, press F12 (Windows only) or choose Firefox→Web
Developer→Firebug→Open Firebug (Windows) or Tools→ Web
Developer→Firebug→Enable Firebug (Mac).

Note: If you don’t like the cramped appearance of the web page stacked directly on top of Firebug,
choose Firefox→Web Developer→Firebug→“Open Firebug in New Window” (Windows) or Tools→ Web
Developer→Firebug→“Open Firebug in New Window” (Mac).

3. Click the Script tab (see Figure 15-6).
The Script tab lists the source code for the file you wish to debug. In the case
of a script that’s written into a web page, you see the source code for the entire
web page (including HTML). For an external JavaScript file, you see just the
JavaScript in that file.

486 javascript & jquery: the missing manual

Debugging with
Firebug

Figure 15-6:
The Firebug debugger
lets you set breakpoints
(lines where the script
stops and waits), control
the execution of the
script, and watch vari-
ables in the Watch list. As
the debugger executes
the script, the current line
(the one that’s about to
run) has a yellow arrow
to its left (circled).

Source menu

Breakpoints

Script tab Watch list
Debugger
controls

4. Select the file with the script you wish to debug from the source menu (see
Figure 15-6).
It’s common to have scripts placed in different files: the web page itself, or one or
more external JavaScript files. If your page uses scripts from multiple files, you
need to select the file containing the script you wish to debug.

5. Add breakpoints.
To add a breakpoint, click to the left of the line’s number. A red bullet appears
indicating a breakpoint.

Note: Adding a breakpoint to a line that only contains a comment has no effect—the debugger won’t stop
on that line. Only add breakpoints to lines containing actual JavaScript code.

6. Reload the web page.
Since you have to view your web page in Firefox in order to open Firebug and
add breakpoints, the JavaScript you want to debug may have already run (before
you added any breakpoints). In this case, you need to reload the page so you can
start the JavaScript over again.
If you added a break point in a function that responds to an event (for example,
you want to debug the code that runs when you click a button or mouse over a
link), then you need to trigger that event—click the button, mouse over the link,
or whatever—to reach the breakpoint and start the debugging process.

487chapter 15: troubleshooting and debugging

Debugging with
Firebug

After the script begins to run, as soon as a breakpoint is reached, the script
stops. The program is frozen in time, waiting to execute the line from the first
breakpoint.

7. Use Firebug’s controls to step through the execution of the program.
Firebug provides four controls (see Figure 15-6) that dictate how the program
runs after stopping at the breakpoint. You can read about these controls in the
next section.

8. Monitor program conditions in the Watch list (see Figure 15-6).
The point of stepping through a program is to see what’s going on inside the
script at any particular line. The Watch list provides basic information about the
program’s condition and lets you add additional variables you want to watch.
For example, if you wanted to track the value of the variable score as the script
runs, you can do that in the Watch list. You’ll find out how to use the Watch list
on page 488.

9. Fix your script in a text editor.
Hopefully, in stepping through your script you’ll find out what’s going wrong—
for example, why the value of a particular variable never changes, or why a con-
ditional statement never evaluates to false. With that information, you can then
jump to your text editor and modify your script (you’ll run through an example
of fixing a script in the tutorial on page 489).

10. Test the page in Firefox, and, if necessary, repeat the above steps to keep de-
bugging your script.

Controlling your script with the debugger
Once you’ve added breakpoints to the script and reloaded the page, you’re ready to
step through the script line by line. If you added a breakpoint to part of the script
that runs when the page loads, the script will stop at the breakpoint; if you added a
breakpoint to a line that only runs after an event (like clicking a link), you need to
trigger that event before you can get to the breakpoint.

When the debugger stops the program at a breakpoint, it doesn’t run that line of
code; it stops just before running it. You can then click one of the four buttons on the
debugger to control what the debugger does next (see Figure 15-6):

• Play. The Play button simply starts the script running. The script won’t stop
again until the JavaScript interpreter encounters another breakpoint, or until
the script has finished running. If there’s another breakpoint, the script stops
again and waits for you to click one of the four debugger controls.
Use the Play button if you just want run the program through or skip to the next
breakpoint.

• Step Over. This useful option runs the current line of code, then stops at the
next line in the script. It’s named Step Over because if the current line of code

488 javascript & jquery: the missing manual

Debugging with
Firebug

includes a call to a function, it won’t enter the function—it steps over the func-
tion and stops at the next line of code. This option is great if you know the
function that’s being called works flawlessly. For example, if your script calls a
jQuery function, you’ll want to step over the call to that function—otherwise,
you’ll be spending a lot of time viewing the scary jQuery programming line by
line. You’ll choose the Step Over option, unless you’re at a line of code that calls
a function you’ve created—then you’ll want to see what happens inside that
function using the Step Into option described next.

• Step Into. Step Into takes the debugger into a function call. That is, if you’re on a
line that includes a call to a function, the debugger enters the function and stops
at the first line of that function. This option is the way to go when you’re not
sure if the problem is in the main script or within a function you wrote.
Skip this option if you’re sure that the function being called works—for ex-
ample, if the function is one you’ve used dozens of times before. You also want
to use Step Over instead of Step Into when you’re debugging a line of code that
includes a jQuery selector or command. For example, $(‘#button’) is a jQuery
way to select an element on the page. However, it’s also a function of the jQuery
library, so if you click the Step Into button when you encounter a jQuery func-
tion, you’ll jump into the complex world of the jQuery library. (And if that hap-
pens, you’ll know because the script tab will change to show all of the JavaScript
code for the jQuery file.)
If, when using the debugger, you find yourself lost within a function, or in the
code of a JavaScript library like jQuery, you can use the control described next
to get out.

• Step Out. The Step Out button gets the debugger out of a function call. You’ll
usually use it after using Step Into. When you do, the function runs as normal,
but you won’t stop at each line of the function as you would if you clicked the
Step Over or Step Into buttons. When you click this button, the debugger re-
turns to the line where the function was originally called and then stops.

Watching your script
While the buttons at the top of the debugger let you control how the script executes,
the whole point of a debugger is to see what’s going on inside the script. That’s where
the Watch list comes in (see Figure 15-7). The Watch list provides a listing of vari-
ables and functions within the context of the current executing line of code. All
that means is if you put a breakpoint within a function, you’ll see a list of all of the
variables that are defined within that function; if you put a breakpoint in the main
body of your script, you’ll see a list of all variables that are defined there. You’ll also
see any functions that you’ve created listed in the Watch list.

489chapter 15: troubleshooting and debugging

Debugging Tutorial

Figure 15-7:
Firebug’s Watch list shows the value of differ-
ent variables as the program runs. You can
add your own expressions to the list, which ap-
pear as grey stripes at the top of the window.

Add new expression

You can add your own variables and expressions using the yellow bar with the label
“New watch expression…”. Just click the yellow bar, and a text field appears. Type
the name of a variable you’d like to track, or even a JavaScript statement you’d like to
execute. For example, since the debugger doesn’t keep track of a counter variable in
a for loop (page 97), you can add this variable, and as you go step by step through the
loop, you can see how the counter changes each time through the loop.

You can think of this Watch list as a kind of a continual console.log() command. It
prints out the value of a particular variable or expression at the time a particular line
of code is run.

The Watch list offers valuable insight into your program, providing a kind of freeze-
frame effect so you can find exactly where in your script an error occurs. For ex-
ample, if you know that a particular variable holds a number value, you can go step
by step through the script and see what value gets stored in the variable when it’s
first created and see how its value gets modified as the program runs. If, after you
click the Step Through or Step Into buttons, you see the variable’s value change to
something you didn’t expect, then you’ve probably found the line where the error is
introduced.

Debugging Tutorial
In this tutorial, you’ll use Firebug to debug a file that’s filled with various types of
errors (syntax errors, runtime errors, and logic errors). The page is a simple quiz
program that poses three questions and prints quiz results. (Open the complete_de-
bugger.html file in the chapter15 folder in any web browser to see how the page is
supposed to work.)

490 javascript & jquery: the missing manual

Debugging Tutorial

Note: See the note on page 29 for information on how to download the tutorial files.

To complete this tutorial, you’ll need run the Firefox web browser and have the Fire-
bug extension installed and turned on—see page 477 for instructions.

1. Start Firefox and open the file debugger.html from the chapter15 tutorials
folder.
In the top, right of the browser window, Firebug indicates that there is 1 error
(see Figure 15-8). You must open the Firebug console to find out what’s wrong.

2. Click the Firebug icon in the top right of the browser to open Firebug, and
select the Console tab.
You should see the error message in Figure 15-8: “Missing] after element list.”
Square brackets are used for creating arrays (see page 60), so it appears that one
of an array’s closing brackets is missing. This omission is a syntax error (see the
box on page 471) because it represents a “grammatical error” in the code (like a
sentence missing a period). You’ll notice that to the right of the error message,
Firebug lets you know that this error occurred in line 15.

Figure 15-8:
The Firebug console is the first
stop for tracking down syntax
and runtime errors that bring a
script to its knees.

Errors
Open Firebug

491chapter 15: troubleshooting and debugging

Debugging Tutorial

3. Launch your text editor and open the file debugger.html. Locate line 15 (it’s
a single ; on a line by itself). Type a closing square bracket before the ; so the
line looks like this:
];

This bracket ended a nested array (page 110) that contained all of the questions
and answers for the quiz.

4. Save the file; return to Firefox, and reload the page.
Another error! This time the error console says “$ is not defined” and points to
line 10 containing jQuery’s $(document).ready() function. When Firefox reports
that something’s “not defined,” it means the code is referring to something that
doesn’t exist, which could be the name of a variable or a function that hasn’t yet
been created. Or you might just have a typo in the code. In this case, the code
looks OK. The culprit is actually earlier on the page, in this code:
<script src="_js/jquery-1.6.3.min.js"></script>

A common problem when working with external scripts is accidentally typing
the wrong path to the script. In this case, the jquery-1.6.2min.js file is located
inside a folder named _js that’s outside this file’s folder. The code here says that
the file should be inside the same folder as this web page; because Firefox can’t
find the jquery-1.6.3.min.js file (where jQuery’s special $() function is defined),
it spits out an error.

5. Change the <script> tag to read:
<script src="../_js/jquery-1.6.3.min.js"></script>

The ../ indicates that the js folder is outside this folder, and the path is now cor-
rectly pointing to the jQuery file. What else could be wrong with this program?

6. Save the file; return to Firefox and reload the page.
No errors! Looks like the page is fixed…or is it?

7. Click the Start Quiz button on the web page.
Bam! Another error. This time the console reports that “askQuestions is not
defined” and points to line 69 near the end of the script. Since this error only
appears while the program is running, it’s called a runtime error (see the box
on page 471). The problem appears toward the end of the script, within this
conditional statement:
if (quiz.length>0) {
 askQuestions();
 } else {
 giveResults();
 }

By now it’s probably dawning on you that when something’s not defined, it’s
often just because of a simple typo. In this case, askQuestions() is a call to a
function, so take a moment now to look through the code and try to find this
function.
Did you find it? While there isn’t an askQuestions() function, you should have
noticed an askQuestion() function (without an s).

492 javascript & jquery: the missing manual

Debugging Tutorial

8. Return to your text editor, and then remove the last s from askQuestions() in
line 70 (near the end of the script). Save the file, reload it in Firefox, and then
click the Start Quiz button again.
Now, a quiz question appears along with five multiple-choice options. Unfortu-
nately, the last option has a label of undefined. Smells like an error. However, the
Firebug console is empty, so technically there’s no JavaScript error. Something
must be wrong with the program’s logic. To get to the bottom of the trouble,
you’ll need to use Firebug’s debugger.

9. In Firebug, click the Script tab and select debugger.html from the source menu
directly above the Script tab (see Figure 15-9).
The Script tab gives you access to the page’s JavaScript. If the page includes
JavaScript and you’ve linked to other external JavaScript files, the Source menu
lets you choose which JavaScript code you wish to debug.
Because the “undefined” radio button seems to be out of place, the code that
creates the radio buttons is a good place to start looking for this bug. If you had
written this script, you’d probably know just where to look in your code; how-
ever, if you were just handed this buggy script, you’d have to hunt around until
you found that part of the script.
In this case, the radio buttons are created within a function named buildAn-
swers(), whose purpose is to build a series of multiple choice options repre-
sented by radio buttons. That function is passed an array that includes a list
of values for each radio button. When the function is done, it returns a string
containing the HTML for the radio buttons. So this function’s a good place to
start debugging.

Figure 15-9:
In Firebug, you can
debug any scripts that
the current page uses.
The Source menu lets
you select the JavaScript
embedded in the cur-
rent web page or from
any attached external
JavaScript file.

Source menu Script tab

10. In Firebug’s Script tab, scroll down until you see line 47. Click to the left of 46
to insert a breakpoint (circled in Figure 15-9).

493chapter 15: troubleshooting and debugging

Debugging Tutorial

A red dot appears to the left of line 46. The dot indicates a breakpoint, or a spot
in the code, where the JavaScript interpreter stops running the script. In other
words, when this script runs again, the moment the JavaScript interpreter hits
that line, it stops, and you’ll be able to step line by line through the code to see
what’s happening under the hood.
The debugger also lets you look at the values of variables as the program runs,
much as you used the console.log() function on page 479. You’ll tell Firebug
what variables you want to track next.

11. In the right side of the Firebug window, click the New Watch Expression bar,
type i, and then press the Return (or Enter) key.
This step adds the variable i to the Watch list. That variable is used in the for
loop as a counter to track how many times the loop runs (see page 97 for more
on for loops). As the script runs, you’ll be able to see how that value changes.
Next, you’ll add another variable to watch.

12. Click the New Watch Expression bar again, type answers.length, and then hit
Return.
Don’t worry about the value Firebug displays at this point (it probably says “an-
swers is not defined”). You can’t track the values of many variables until you’re
actually running the debugger and are inside the function where the variable
lives. Now it’s time to take a look inside the script.

13. Click Firefox’s Reload button or press Ctrl+R (⌘-R). When the page reloads,
click the Start Quiz button on the web page.
The script starts, and the first question is written to the web page. But when it
comes time to create the radio buttons, the debugger stops at line 46 (see the
top image in Figure 14-10). Notice that in the Watch tab, the value for i is not
defined. That’s because the breakpoint stops the program just before the line is
executed. In other words, the loop hasn’t started, and the i variable hasn’t yet
been created.
However, the value of answers.length is set to 4. The array answers is an array of
answers that was passed to the function (you can see the array elements listed
lower down in the Watch list). An array’s length property indicates the number
of items in the array; in this case there are four, so you should get four radio
buttons when the function’s completed.

14. Click the Step Over button (see Figure 15-10).
This button takes you to the next line in the program. Now you can see that i is
set to 0. You’ll keep clicking through this loop.

494 javascript & jquery: the missing manual

Debugging Tutorial

Figure 15-10:
When you step through a pro-
gram using Firebug, red circles
to the right of a line number
indicate a break point, while
yellow arrows indicate the line
of code that the JavaScript
interpreter is currently stopped
at. Click Step Over (or Step
Into) to run that line of code
and stop at the next line.

Step over Watch variable

15. Click the Step Over button until you see the value of i change to 5 in the Watch
list (bottom image in Figure 15-10).
Although there are only four items in the answers array, you can see that the for
loop is actually running five times (the value of i). So something’s funny about
how the loop is terminated. Remember that in a for loop, the middle statement
in the for statement is the condition that must be true for the loop to run (see
page 97). In this case, the condition is i<=answers.length;. In other words, the
loop starts out with i containing 0 and continues to run as long as i is less than
or equal to the number of items in the answers array. In other words, i will be
0, 1, 2, 3, and 4 before it terminates—that’s five times. However, since there’s
only four items in the answers array, the fifth time through the loop there are
no more answers to print: “undefined” is printed because there is no fifth item
in the answers array.

495chapter 15: troubleshooting and debugging

Debugging Tutorial

16. Return to your text editor, and change the for loop at line 46 to read:
for (i=0;i<answers.length;i++) {

Now the loop only runs for the number of items in the answers array, creating
one radio button for each possible answer.

17. Save the file, and preview it in Firefox.
You can turn off the breakpoint by clicking its red dot in the firebug script win-
dow to see the finished page run without interruption.

The page complete_debugger.html contains the completed version of this tutorial. As
you can see, finding bugs in a program can take a lot of work. But a debugging tool
like Firebug makes it a lot easier to see inside a program’s “guts” and find out what’s
going wrong.

497

appendix
a

JavaScript Resources

This book provides enough information and real-world techniques to get your
JavaScript career off to a great start. But no one book can answer all of your
JavaScript or jQuery questions. There’s plenty to learn when it comes to Ja-

vaScript programming, and this appendix gives you taking-off points for further
research and learning.

References
Sometimes you need a dictionary to read a book. When programming in JavaScript,
it’s great to have a complete reference to the various keywords, terms, methods, and
other assorted bits of JavaScript syntax. You can find references both in online and
book form.

Websites
• Mozilla Developer Center Core JavaScript Reference (https://developer.mozilla

.org/en/JavaScript/Reference) provides a complete reference to JavaScript. It’s
very detailed, but sometimes hard to understand since it’s aimed at a technical
audience.

• JavaScript Quick Reference from DevGuru (www.devguru.com/technologies/
javascript) is a straightforward listing or JavaScript keywords and methods.
Click a term, and a page explaining the keyword or method appears.

• Google Doctype (http://code.google.com/doctype) covers JavaScript, DOM, and
CSS and tells you which features are supported by each browser. It’s a kind of
encyclopedia for Web developers.

https://developer.mozilla.org/en/JavaScript/Reference
https://developer.mozilla.org/en/JavaScript/Reference
www.devguru.com/technologies/javascript
www.devguru.com/technologies/javascript

498 javascript & jquery: the missing manual

Basic JavaScript

• MSDN JavaScript Language Reference (http://msdn.microsoft.com/en-us/
library/yek4tbz0(v=VS.94).aspx) from Microsoft is an excellent resource if
you’re developing with Internet Explorer. While it provides technical informa-
tion on the JavaScript used in other browsers, this resources provides a lot of
IE-only information.

Books
• JavaScript: The Definitive Guide by David Flanagan (O’Reilly) is the most

thorough printed encyclopedia on JavaScript. It’s a dense, heavy tome, but it has
all the details you need to thoroughly understand JavaScript.

Basic JavaScript
JavaScript isn’t easy to learn, and it never hurts to use as many resources as possible
to learn the ins and outs of programming for the Web. The following resources pro-
vide help with the basics of the JavaScript language (which can sometimes be quite
difficult).

Articles	and	Presentations
• A (Re)-Introduction to JavaScript by Simon Willison (www.slideshare.net/

simon/a-reintroduction-to-javascript). This entertaining presentation provides
a slide-based overview of the JavaScript language.

Websites
• The W3 Schools JavaScript tutorial (www.w3schools.com/js) is a thorough

(though not always thoroughly explained) tutorial that covers most aspects of
JavaScript programming.

• An Introduction to JavaScript from howtocreate.co.uk (www.howtocreate
.co.uk/tutorials/javascript/introduction) provides a free, detailed discussion of
JavaScript. Of course, since you’re using jQuery you won’t need a lot of the in-
formation on this site, since it covers much of the traditional methods of select-
ing and manipulating DOM elements.

Books
• Head First JavaScript by Michael Morrison (O’Reilly) is a lively, highly illus-

trated introduction to JavaScript programming. It provides lots of information
on how JavaScript works and how to program with it, but doesn’t provide much
in the way of immediately useful web page examples.

http://msdn.microsoft.com/en-us/library/yek4tbz0(v=VS.94).aspx
http://msdn.microsoft.com/en-us/library/yek4tbz0(v=VS.94).aspx
www.slideshare.net/simon/a-reintroduction-to-javascript
www.slideshare.net/simon/a-reintroduction-to-javascript
www.howtocreate.co.uk/tutorials/javascript/introduction
www.howtocreate.co.uk/tutorials/javascript/introduction

499appendix a: javascript resources

jQuery

jQuery
Much of this book covered the jQuery JavaScript library, but there’s still lots to learn
about this powerful, timesaving, and fun programming library.

Articles	and	Presentations
• jQuery Essentials by Marc Grabanski (www.slideshare.net/1Marc/jquery-

essentials) is a fun and thorough slideshow covering the basics of jQuery. Highly
recommended.

• jQuery Tutorials for Designers (www.webdesignerwall.com/tutorials/jquery-
tutorials-for-designers) is an article from the well-known web design blog, Web-
Designer Wall, that includes 10 cool, simple things you can do with jQuery.

• jQuery Cheatsheet (http://woorkup.com/2011/05/12/jquery-visual-cheat-sheet
-1-6/) is a downloadable PDF that puts all of jQuery’s functions on a single,
printable page.

Websites
• jQuery.com, the home of the wonderful jQuery JavaScript library, provides ac-

cess to discussion groups, documentation, plug-ins, and downloads.

• jQuery’s documentation is provided via a user-generated Wiki (http://docs
.jquery.com). Anyone’s free to add or edit the descriptions of jQuery’s many
features on this site, but a core group of people handles most of the documenta-
tion. It’s the number one place for complete information on jQuery.

• jQuery for Designers (http://jqueryfordesigners.com) is a site that includes writ-
ten and video tutorials for creating interesting visual effects, useful interfaces,
and generally improving websites using jQuery.

• Learning jQuery (www.learningjquery.com) provides information from some
of jQuery’s lead developers.

• Script Junkie (http://msdn.microsoft.com/en-us/scriptjunkie) is a Microsoft site
aimed at web developers. It includes great articles on HTML, CSS, and Java-
Script (with an emphasis on jQUery).

Books
• jQuery in Action by Bear Bibeault and Yehuda Katz (Manning) covers jQuery

thoroughly with lots of example programming. It assumes some JavaScript and
programming knowledge.

• jQuery Cookbook (O’Reilly) features tons of “recipes” for some of the most
common tasks and problems you’ll face as a programmer. It’s written by a cast
of characters, many of them the brilliant minds behind jQuery.

www.slideshare.net/1Marc/jquery-essentials
www.slideshare.net/1Marc/jquery-essentials
www.webdesignerwall.com/tutorials/jquery-tutorials-for-designers
www.webdesignerwall.com/tutorials/jquery-tutorials-for-designers
http://woorkup.com/2011/05/12/jquery-visual-cheat-sheet-1-6/
http://woorkup.com/2011/05/12/jquery-visual-cheat-sheet-1-6/
http://docs.jquery.com
http://docs.jquery.com

500 javascript & jquery: the missing manual

Ajax

• jQuery: Novice to Ninja by Earle Casteldine and Craig Sharkie (Sitepoint) pro-
vides lots of instructions in using jQuery as many hands-on examples that show
how to tackle common user-interface needs.

Ajax
Ajax brings together your Web browser, JavaScript, and server-side programming,
for triple the fun (and three times the headache). Fortunately, there are plenty of
resources to turn to for learning how to use Ajax.

Websites
• Ajaxian (http://ajaxian.com) is a great source for the latest news concerning

Ajax, JavaScript frameworks, and useful web services. The site is aimed at pro-
fessional JavaScript programmers but is also full of news, tidbits, and often
highlights sites that use Ajax in creative ways.

Books
• Head Rush Ajax by Brett McLaughlin (O’Reilly) is probably the best introduc-

tion to Ajax for those new to both JavaScript and server-side programming. Its
playful approach and graphical layout make all of the basic concepts and tech-
niques of Ajax easily understandable.

Advanced JavaScript
Oh yes, JavaScript is even more complicated than this book leads you to believe.
Once you become proficient in JavaScript programming, you may want to expand
your understanding of this complex language.

Articles	and	Presentations
• Show Love to the Object Literal by Chris Heilman (www.wait-till-i.com/2006/

02/16/show-love-to-the-object-literal) is a short blog post that explains good uses
for JavaScript object literals.

• Do Object Oriented Programming with JavaScript by Chris Pels (http://msdn
.microsoft.com/en-us/scriptjunkie/ff698282.aspx) provides a short video intro-
duction to a complex topic. It’s a good place to start learning object-oriented
programming with JavaScript.

• Sorting a JavaScript array using array.sort() (www.javascriptkit.com/javatutors/
arraysort.shtml) provides a useful information on how to sort the contents of
arrays, including a quick method of randomizing and array (think shuffling a
deck of cards).

www.wait-till-i.com/2006/02/16/show-love-to-the-object-literal
www.wait-till-i.com/2006/02/16/show-love-to-the-object-literal
http://msdn.microsoft.com/en-us/scriptjunkie/ff698282.aspx
http://msdn.microsoft.com/en-us/scriptjunkie/ff698282.aspx
www.javascriptkit.com/javatutors/arraysort.shtml
www.javascriptkit.com/javatutors/arraysort.shtml

501appendix a: javascript resources

CSS

Websites
• Eloquent JavaScript (http://eloquentjavascript.net) is a JavaScript tutorial site.

It’s organized well, with creative ways of teaching lessons. Although it’s sup-
posed to be a beginner JavaScript tutorial site, the author writes as though he’s
talking to a bunch of computer scientists, so it’s not the best place to start if
you’re new to JavaScript or programming. It’s also available as a print book.

• Unobtrusive JavaScript (www.onlinetools.org/articles/unobtrusivejavascript/
index.html) from Christian Heilmann is a mini-site dedicated to explaining the
concept of unobtrusive JavaScript—specifically, how to make a website acces-
sible to everyone (even those whose browsers don’t have JavaScript enabled).

• The JavaScript section of Douglas Crockfords’ World Wide Web (http://java
script.crockford.com) provides a lot of (complex) information about JavaScript.
There’s a lot of information on the site, some of it requiring a computer science
degree just to understand.

• Yahoo’s JavaScript Developer Center (http://developer.yahoo.com/javascript)
has more information on JavaScript than nearly any other site on the Web.
Much of the information is geared toward Yahoo’s own JavaScript library, YUI,
as well as the many Web services Yahoo offers (like Yahoo Maps).

• Mozilla Developers Network JavaScript section (https://developer.mozilla.org/
en/javascript) contains tons of JavaScript information including the JavaScript
reference mentioned at the beginning of this appendix, but also a detailed guide
(https://developer.mozilla.org/en/JavaScript/Guide) that covers the different ver-
sions of JavaScript as well as detailed examples of JavaScript concepts in action.

Books
• JavaScript Patterns by Stoyan Stefanov (O’Reilly). When you really want to

push your JavaScript programming forward, this book provides programming
“patterns” that solve common tasks including how best to work with object lit-
erals, JSON, and arrays. Heavy duty programming; not for beginners.

• JavaScript: The Good Parts by Douglas Crockford (O’Reilly) uncovers the most
useful parts of JavaScript, sidestepping bad programming techniques. Douglas
should know what he’s talking about, since he’s a Senior JavaScript Architect at
Yahoo. The book is short and dense, but contains a lot of wisdom about how to
use JavaScript well.

CSS
If you’re tackling this book, you’re probably already pretty comfortable with CSS.
JavaScript can really take advantage of the formatting power of CSS to control not
only the look of elements, but even to animate them across the screen. If you need a
CSS refresher, here are a few helpful resources.

www.onlinetools.org/articles/unobtrusivejavascript/index.html
www.onlinetools.org/articles/unobtrusivejavascript/index.html
http://java script.crockford.com
http://java script.crockford.com
https://developer.mozilla.org/en/javascript
https://developer.mozilla.org/en/javascript

502 javascript & jquery: the missing manual

CSS

Websites
• The Complete CSS Guide from WestCiv (www.westciv.com/style_master/

academy/css_tutorial) covers pretty much every part of Cascading Style Sheets.
You won’t learn a lot of different techniques here, but the basics of what CSS is
and how to create styles and style sheets are thoroughly covered.

• The SitePoint CSS Reference (http://reference.sitepoint.com/css) is another on-
line CSS reference that’s easy to use and has a search engine.

• Selectutorial (http://css.maxdesign.com.au/selectutorial) is a great way to learn
CSS selector syntax. Since jQuery is pretty much founded on the idea of using
CSS selectors to manipulate the HTML of a page, it pays to have a very good
understanding of this concept.

Books
• CSS: The Missing Manual 2nd Edition, by David Sawyer McFarland (O’Reilly)

is a thorough, tutorial-driven book on Cascading Style Sheets. It includes in-
depth coverage of CSS as well as real-world examples and troubleshooting tips
for making sure your CSS works in a cross-browser world.

• CSS: The Definitive Guide by Eric Meyer (O’Reilly). The name says it all; this
book covers CSS in such detail that your brain will definitely hurt if you try to
read it all in one sitting.

• Stunning CSS3 by Zoe Mickley Gillenwater (New Riders) is a well-designed
book that covers many aspects of the new CSS3 standard and demonstrates so-
phisticated CSS3-based designs, as well as many techniques for working effec-
tively with CSS3.

www.westciv.com/style_master/academy/css_tutorial
www.westciv.com/style_master/academy/css_tutorial

503

index

Index
- (minus sign)

subtraction operator, 50
-- subtract 1 operator, 54
-= subtract and assign operator, 54

(...) (parentheses)
following function name, 42, 100, 102
grouping operations, 51
in if statement, 79
syntax errors involving, 468

. (period)
preceding class selectors, 132
preceding jQuery functions, 138
preceding object properties or methods, 63,

64, 71
in regular expressions, 432

| (pipe character)
|| logical OR operator, 86

+ (plus sign)
addition operator, 50
concatenation operator, 51
in regular expressions, 435
++ add 1 operator, 54
+= add and assign operator, 54
+= concatenate and assign operator, 55

(pound sign), in ID selectors, 130
? (question mark)

in regular expressions, 435
? : ternary operator, 461–462

“...” or ‘...’ (quotes)
enclosing strings, 43–44
syntax errors involving, 469, 472

> (right angle bracket)
greater than operator, 80
>= greater than or equal to operator, 80

; (semicolon), ending JavaScript
statements, 41–42

A
a tag, HTML. See links
absolute path URL, 28
absolute positioning, 189
add 1 operator (++), 54
add and assign operator (+=), 54

Symbols
& (ampersand)

&& logical AND operator, 86
<...> (angle brackets), enclosing HTML tags, 6
* (asterisk)

in regular expressions, 435
multiplication operator, 50
*= multiply and assign operator, 54

\ (backslash), in regular expressions, 432
{...} (braces)

in CSS styles, 9
in function, 100
in if statement, 79, 89
in regular expressions, 435–436
syntax errors involving, 469–470

[...] (brackets)
in array declaration, 61
in regular expressions, 432–433

^ (caret), in regular expressions, 432
: (colon), in jQuery filters, 135
$ (dollar sign)

preceding jQuery object, 129, 403–404
in regular expressions, 432

= (equal sign)
assignment operator, 48
syntax errors involving, 473
== equality operator, 80–81, 89
=== strict equality operator, 80

! (exclamation point)
NOT operator, 87–88
!= inequality operator, 80–81
!== strict inequality operator, 80

/ (forward slash)
division operator, 50
in HTML tags, 6
/= divide and assign operator, 54
/*...*/ enclosing comments, 73
/.../ enclosing regular expressions, 431
// preceding comments, 73–74

- (hyphen), in CSS properties, 193
< (left angle bracket)

less than operator, 80
<= less than or equal to operator, 80

504 index

Index

addClass() function, jQuery, 142
addition operator (+), 50
adjacent sibling selectors, 133
after() function, jQuery, 139–140, 419
Ajax (Asynchronous JavaScript and XML), 23,

341–349
error handling, 364
JavaScript for, 345
jQuery functions for

error() function, 364
get() function, 356–357, 358, 365–370
getJSON() function, 371–376, 378, 381
load() function, 349–356
post() function, 356–357, 358
serialize() function, 360

jQuery plug-ins for, 388
receiving data from web server

from Flickr, 378–383
get() function for, 356
from Google Maps, 387–400
JSON format for, 370–376
JSONP format for, 377–378
loading HTML file content from, 349–352
post() function for, 356
processing data, callback function

for, 360–364
XML format for, 365

resources for, 410, 500
sending data to web server

formatting data, 357–360
get() and post() functions for, 356–357

tutorials for, 352–356, 365–370, 383–387,
397–400

uses of, 342–343
XMLHttpRequest object for, 344–345,

346–349
Ajax File Upload plug-in, 388
Ajaxian (web site), 500
Alert box, displaying, 30–31
alert() function, JavaScript, 30, 42
AMP (Apache, MySQL, and PHP), 346
ampersand (&)

&& logical AND operator, 86
AND operator, logical (&&), 86
angle brackets (<...>)

enclosing HTML tags, 6
left angle bracket (<)

less than operator, 80
<= less than or equal to operator, 80

right angle bracket (>)
greater than operator, 80
>= greater than or equal to operator, 80

animated navigation bar, 249–256
animate() function, jQuery, 192–194

animations, jQuery, 192–196
callback function for, 196–198
of color, 192
completion of, performing actions after, 196–

198
speed of (easing), 194–196
tutorials for, 198–204

anonymous functions, 148–149, 171–172
AnythingSlider plug-in, 312–319
API (Application Programming Interface),

jQuery, 407–413
append() function, jQuery, 139, 405–406, 419
application server, 345
Aptana Studio, 10
arguments, for functions, 103–104
array notation, for JSON data, 372–373
arrays, 59–66

accessing items in, 62–63, 67–69
adding items to, 63–65, 69
assigning values to, 61, 62, 67
counters for, in loops, 96, 97–98
data types in, 61
declaring, 60–61, 67
deleting items from, 65, 66
empty, 61
index for, 62–63
length of, 63, 65
looping through items in, 95–99
queues created from, 65
selecting random elements of, 450
tutorials for, 66–70

arrows, as used in this book, 15
assignment operator (=), 48
asterisk (*)

in regular expressions, 435
multiplication operator, 50
*= multiply and assign operator, 54

Asynchronous JavaScript and XML. See Ajax
attr() function, jQuery, 146–147, 208, 236
attributes, of HTML tags, 6

manipulating, 146–147, 409
selectors for, in jQuery, 133–134, 239

Autocomplete plug-in, 388
automatic loops, for jQuery selections, 136–

137
automatic type conversion, 53

B
\b symbol, in regular expressions, 432
backslash (\), in regular expressions, 432
BBEdit, 11
before() function, jQuery, 139–140, 419
behavioral layer, 4. See also JavaScript
Bibeault, Bear (author)

jQuery in Action (Manning), 499

Index

505index

bind() function, jQuery, 177–179, 421–422
blur event, 161, 266
blur() function, jQuery, 266
blur() method, window object, 244
body tag, HTML, 6
books and publications

CSS: The Definitive Guide (O’Reilly), 502
CSS: The Missing Manual 2nd Edition

(O’Reilly), 4, 132, 502
Head First HTML with CSS and XHTML

(O’Reilly), 4
Head First JavaScript (O’Reilly), 498
Head First PHP & MySQL (O’Reilly), 351
Head Rush Ajax (O’Reilly), 500
HTML5: The Missing Manual (O’Reilly), 5
JavaScript Patterns (O’Reilly), 501
JavaScript: The Definitive Guide

(O’Reilly), 498
JavaScript: The Good Parts (O’Reilly), 501
jQuery Cookbook (O’Reilly), 499
jQuery in Action (Manning), 499
jQuery: Novice to Ninja (Sitepoint), 500
Learning PHP, MySQL, and JavaScript

(O’Reilly), 351
PHP Solutions:Dynamic Web Design Made

Easy (Friends of Ed), 351
Stunning CSS3 (New Riders), 502

booleans, 44–45, 82
braces ({...})

in CSS styles, 9
in function, 100
in if statement, 79, 89
in regular expressions, 435–436
syntax errors involving, 469–470

brackets ([...])
in array declaration, 61
in regular expressions, 432–433

breakpoints in scripts, 485–489
browsers. See also specific browsers

incompatibilities between, 2–3
DOM handling, 129
jQuery handling, 4

JavaScript interpreter in, 25
layout/rendering engine in, 25
View Source command in, 141

browser window. See window object
built-in functions, 42. See also window object,

methods for
alert() function, 30, 42
isNaN() function, 42, 92, 447–448
Number() function, 53, 446
parseFloat() function, 447
parseInt() function, 446–447
prompt() function, 57–58

:button selector, 260

C
calendar. See Datepicker plug-in
callback function

for effects and animations, 196–198
for processing data from Ajax, 360–364

caret (^), in regular expressions, 432
carriage returns, in JavaScript, 49
Cascading Style Sheets. See CSS (Cascading

Style Sheets)
case, of strings, 426–427
case-sensitivity of JavaScript, 473–474
Casteldine, Earle (author)

jQuery: Novice to Ninja (Sitepoint), 500
CDN (content distribution network), for

jQuery, 119–120
chaining functions, jQuery, 137–138, 146
change event, 161, 267–268
change() function, jQuery, 267
changeSpeed option, FancyBox, 227
checkboxes

selecting, 260–261
status of, determining, 262–263
validating, 297–299

:checkbox selector, 260
:checked filter, 260–261
children() function, 415
child selectors, 133
Chrome

Developer Tools in, 141
JavaScript Console in, 38–39

classes, CSS, 142–143
class selectors, 131–132
click event, 159

for forms, 266–267
to open a new window, 245

click() function, jQuery, 267
clicking, 14
client-side languages, 23
close() method, window object, 243
closest() function, 416
code examples. See online resources
CoffeeCup, 11
CoffeeCup Free HTML Editor, 10
colon (:), in jQuery filters, 135
color, animating, 192
Color plug-in, 192
combining strings. See concatenating strings
comments, 72–76, 124
comparison operators, 80
compiled languages, 25
The Complete CSS Guide (web site), 502
compressing external JavaScript files, 465–466
concatenate and assign operator (+=), 55
concatenating strings, 51–52, 55, 56

Index

506 index

concatenation operator (+), 51
condition

in do/while loop, 98
in for loop, 97
in if statement, 79–81

combining, 86–88
negating, 87–88

setting variables based on, 461–462
in while loop, 93–95

conditional statements, 77–89
conditions in, 79–81

combining, 86–88
negating, 87–88

else clause in, 82–83
else if statement, 83–85
if statement, 79–82
indentation in, 89
nesting if statements, 88–89
switch statement, 462–465
troubleshooting, 89
tutorials for, 89–92

console.log() function, Firebug, 479–480
:contains filter, 136
content distribution network (CDN), for

jQuery, 119–120
content slider, 312–319

arrows in, 316, 317–318
autoplay for, 318
borders for, 317
creating, 313–316
dimensions of, 316–317
labels for, 318
navigation buttons, 317
orientation of, 318
slides of variable sizes, 319

controls. See fields in forms
conventions used in this book, 14–15, 74
conversions between data types

automatic type conversion, 53
converting strings to numbers, 445–447

counters, in loops, 96, 97–98
creditcard validation rule, 282
Crockford, Douglas (author)

Douglas Crockford’s World Wide Web,
JavaScript section (web site), 501

JavaScript: The Good Parts (O’Reilly), 501
CSS (Cascading Style Sheets), 4, 7–9

absolute positioning, 189
applying to HTML elements, 124–127
classes, manipulating, 142–143
location of stylesheets, relative to scripts, 124
object literals for, 145–146
properties, manipulating, 143–146
resources for, 132, 409, 501–502
selectors. See selectors
for tabbed panels, 304–306

css() function, jQuery, 143–146
CSS sprites

in content slider, 316
FancyBox using, 228

CSS: The Definitive Guide (O’Reilly), 502
CSS: The Missing Manual 2nd Edition

(O’Reilly), 4, 132, 502
curly brackets ({...}). See braces
currency, formatting, 448–449
cyclic option, FancyBox, 228

D
\d symbol, in regular expressions, 432
\D symbol, in regular expressions, 432
dashboard tutorial, 198–204
database, browsing, 343
database server, 345
data property, event object, 174
data types, 42–45. See also booleans; numbers;

strings
in arrays, 61
automatic type conversion, 53
determining for an object, 72

Date() method, 450–451, 456–457
Date object, 450–451, 453
Datepicker plug-in, 125, 276
dates

creating, 456–457
functions for, 450–457
regular expressions for, 439
users selecting, plug-in for, 125, 276
validating, in a form, 282

date validation rule, 282
dblclick event, 159
DDMegaMenu plug-in, 256
debugging, 477–489. See also troubleshooting

installing Firebug for, 477–478
stepping through scripts with

breakpoints, 485–489
tracking scripts, 479–480
tutorials for, 481–484, 489–496
viewing errors, 478–479

decision making statements. See conditional
statements

declaration blocks, CSS styles, 8, 9
declarations, CSS styles, 9
delay() function, jQuery, 198
delegate() function, 422–423
descendent selectors, 133
development server, 346
dialog boxes

alert message in, 42
prompt in, 57–58

digits validation rule, 282

Index

507index

dimensions
of browser window, 319–320
of content slider, 316–317
of document, 320
of web page elements, 319–322

disabling form fields, 269–271, 273–276
divide and assign operator (/=), 54
division operator (/), 50
div tag, HTML

for tabbed panels, 302, 303–304
for tooltips, 326–327

doctype declaration, HTML, 5
document

dimensions of, determining, 320
events for, 160

document.getElementById() method,
JavaScript, 128

document.getElementsByTagName() method,
JavaScript, 128

Document Object Model. See DOM
$(document).ready() function, 123, 124,

170–171, 458
document-relative path URL, 28
document.write() method, JavaScript, 31–32,

56
Dojo Toolkit library, 119
dollar sign ($)

in regular expressions, 432
preceding jQuery object, 129, 403–404

DOM (Document Object Model), 127–129
compared to jQuery selections, 136–138
finding elements in, 413–418

Do Object Oriented Programming with
JavaScript (web site video), 500

dot syntax
for JSON data, 372–373
for object properties or methods, 71

Douglas Crockford’s World Wide Web,
JavaScript section (web site), 501

do/while loops, 98–99
Dreamweaver, 11

E
each() function, jQuery, 147–150
easingIn option, FancyBox, 227
easingOut option, FancyBox, 227
easing (speed) of effects and animations, 185,

194–196, 227
Eclipse, 10
editors, 10–11
EditPlus, 11
effects, jQuery, 185–189. See also FancyBox

plug-in
callback function for, 196–198

completion of, performing actions after, 196–
198

fading elements in and out, 187–188
resources for, 409
sliding elements, 188–189
speed of, 185, 194–196
tutorials for, 190–192, 216–222
visibility of elements, 187

element selectors, 131
Eloquent JavaScript (web site), 501
else clause, conditional statements, 82–83
else if statement, 83–85
email addresses, regular expression for, 438–

439
email validation rule, 282
empty array, 61
empty() function, 421
empty string, 58
enabling form fields, 269–271
end() function, 418
equality operator (==), 80–81, 89
equal sign (=)

assignment operator, 48
syntax errors involving, 473
== equality operator, 80–81, 89
=== strict equality operator, 80

equalTo validation rule, 288
error() function, jQuery, 364
errors. See also debugging; troubleshooting

for form validation, 283–284, 288–291,
299–300

in Internet Explorer, blocked content, 31
preventing, 477
syntax errors, 31, 36–37, 467–477
types of, 471
viewing in Firebug, 478–479
from web server, with Ajax, 364

:even filter, 135
event bubbling, 176
event object, 173–175
events, 157–162, 421–424

applying to new elements, 422–423
assigning to selections, 163–164
document/window events, 160
form events, 161, 263–268
keyboard events, 162
mouse events, 159–160, 171–173
multiple, using the same function, 179
passing data to, 177–179
passing functions to, 163–164
removing, 175–176
resources for, 409
stopping normal behavior of, 175
tutorials for, 165–169, 180–184

Index

508 index

examples. See online resources; tutorials
exclamation point (!)

NOT operator, 87–88
!= inequality operator, 80–81
!== strict inequality operator, 80

Expression Web Designer, 11
external HTML files, loading into web

page, 349–356
external JavaScript files, 27–29, 457–459

attaching to web pages, 27–29, 33–34
compressing, 465–466
location of, 29
multiple, order of, 29
path errors involving, 474–476

external links, opening in new window, 238–
240

F
fadeIn() function, jQuery, 34, 187
fadeOut() function, jQuery, 147, 187
fadeTo() function, jQuery, 188, 414
fadeToggle() function, jQuery, 187
false value. See booleans
FancyBox plug-in, 222–234

CSS sprites used by, 228
customizing, 226–231
downloading files for, 224–225
gallery page for, setting up, 223–225
opening a page within a page, 246–249

fancybox.png file, 228
FAQ (Frequently Asked Questions)

tutorial, 180–184
fields in forms, 273. See also forms; specific

fields
changing value of, 267
checking status of, 262–263
clicking, 266–267
disabling, 269–271, 273–276
enabling, 269–271
focus on, 161, 264–265, 268–269, 273
getting value of, 261–262
hiding, 271–272, 276–278
leaving, 266
selecting, 259–261
setting value of, 261–262
showing, 271–272
tags for, 258–259
validating, 278–291

error messages for, 283–284, 288–291,
299–300

plug-in for, setting up, 280–281
on server, 289
tutorial for, 291–300
validation rules for, 281–283, 284–288

:file selector, 260
files, external. See external JavaScript files
filters for selectors, 135–136, 260–261
find() function, jQuery, 365, 407, 413, 414–415
Firebug plug-in, 37, 141, 477–489

installing, 477–478
stepping through scripts with

breakpoints, 485–489
tracking scripts, 479–480
tutorials for, 481–484, 489–496
viewing errors, 478–479

Firefox
JavaScript console in, 35–37
plug-ins for. See Firebug plug-in; HTML

Validator plug-in
:first filter, 135
flags, boolean data type used for, 82
Flanagan, David (author)

JavaScript: The Definitive Guide
(O’Reilly), 498

Flash, 23
Flickr

images from, adding to web page, 378–383
tutorials for, 383–387

floor() method, Match object, 449
focus event, 161, 264–265
focus for form fields, 161, 264–265, 268–269,

273
focus() function, jQuery, 265, 269, 273
focus() method, window object, 244
for loops, 97–98
Form plug-in, 388
forms, 257–268

events for, 161, 263–268
fields in

checking status of, 262–263
clicking, 266–267
disabling, 269–271, 273–276
enabling, 269–271
focus on, 161, 264–265, 268–269, 273
getting values of, 261–262
hiding, 271–272, 276–278
leaving, 266
selecting, 259–261
setting values of, 261–262
showing, 271–272
tags for, 258–259

in HTML5, 22
resources for, 410
submitting, 161, 263–264

multiple times, preventing, 271
without reloading page, 343, 347–348,

365–370
tutorials for, 272–278

Index

509index

validating, 278–291
error messages for, 283–284, 288–291,

299–300
plug-in for, setting up, 280–281
on server, 289
tutorial for, 291–300
validation rules for, 281–283, 284–288

form tag, HTML, 257–259
forward slash (/)

division operator, 50
in HTML tags, 6
/= divide and assign operator, 54
/*...*/ enclosing comments, 73
/.../ enclosing regular expressions, 431
// preceding comments, 73–74

Freeman, Elisabeth (author)
Head First HTML with CSS and XHTML

(O’Reilly), 4
Freeman, Eric (author)

Head First HTML with CSS and XHTML
(O’Reilly), 4

Frequently Asked Questions (FAQ)
tutorial, 180–184

functions, built-in to JavaScript. See built-in
functions

functions, jQuery. See also specific functions
anonymous, 148–149, 171–172
chaining, 137–138, 146
passing to events, 163–164

functions, user-defined in JavaScript, 100–108
calling, 101
creating, 100–101
libraries of. See libraries
location of, 101
naming, 100
parameters for, 102–104
for random numbers, 450
returning a value from, 104–105
scope of variables in, 105–108
tutorials for, 101–102, 108–114
undefined errors involving, 476

G
getDate() method, Date object, 451
getDay() method, Date object, 451, 452
getElementById() method, document

object, 128
getElementsByTagName() method, document

object, 128
getFullYear() method, Date object, 451
get() function, jQuery, 356–357, 358, 365–370
getHours() method, Date object, 451, 452–456
getJSON() function, jQuery, 371–376, 378, 381
getMinutes() method, Date object, 451,

452–456

getMonth() method, Date object, 451, 451–452
getSeconds() method, Date object, 451,

452–456
getTime() method, Date object, 451
global variables, 107–108
GoMap plug-in, 387–400

information windows, adding, 397
map location, setting, 390–391
markers in map, adding, 393–396
navigation controls, removing, 392
scale of

marker for, adding, 392
setting, 391

tutorials for, 397–400
type of map

setting, 391–392
switching between, 392–393

using, 388–389
Google Chrome. See Chrome
Google Docs (web site), 2
Google Doctype (web site), 497
Google Maps (web site)

adding to web page, 387–400
as example of JavaScript, 2, 23, 124

grammatical errors. See syntax errors
graphics. See images
greater than operator (>), 80
greater than or equal to operator (>=), 80

H
h1 tag, HTML, 7
h2 tag, HTML, 7
:has filter, 135
Head First HTML with CSS and XHTML

(O’Reilly), 4
Head First JavaScript (O’Reilly), 498
Head First PHP & MySQL (O’Reilly), 351
Head Rush Ajax (O’Reilly), 500
head tag, HTML, 6
height. See dimensions
height() function, jQuery, 319–322
height property, windows, 242
Heilman, Chris (author)

Show Love to the Object Literal (blog
post), 500

:hidden filter, 136
:hidden selector, 260
hide() function, jQuery, 34, 187
hiding elements. See visibility of elements
hover event, 171–172, 210–211
href attribute, links, 236
HTML5: The Missing Manual (O’Reilly), 5
html() function, jQuery, 138, 405–406, 419

Index

510 index

HTML (Hypertext Markup Language), 4–7. See
also web pages; specific tags

effects for. See effects, jQuery
loading in web page from external file, 349–

352
manipulating, 124–127, 138–141, 146–147,

419–421
model of, for a web page. See DOM
rendered, viewing source for, 141
selecting tags in

with JavaScript, 128–129
with jQuery. See selectors

tags, 5–7
types/versions of, 5, 22
validating, 7

HTML-Kit, 10
html tag, HTML, 6
HTML Validator plug-in, 7
hyperlinks. See links
Hypertext Transfer Protocol. See HTML
hyphen (-), in CSS properties, 193. See

also minus sign (-)

I
ID

selecting tags by, in JavaScript, 128
selectors for, in jQuery, 130–131, 406

iframe tag, HTML, 245–249
if statement, 79–82, 89–92

combining conditions in, 86–88
condition in, 79–81
else clause in, 82–83
else if statement with, 83–85
indentation in, 89
negating conditions, 87–88
nesting, 88–89
troubleshooting, 89

images
from Flickr, adding to web page, 378–383
photo gallery of

with effects, 216–222
with FancyBox. See FancyBox plug-in

preloading, 209–210
rollover images, 210–216
src attribute, changing, 208–209
swapping, 207–211
tutorials for, 211–216, 216–222, 231–234

:image selector, 260
index, for array, 62–63
indexOf() method, strings, 427–428
inequality operator (!=), 80–81
infinite loops, 94
innerHeight() function, jQuery, 321
innerWidth() function, jQuery, 321
:input selector, 260

input tag, HTML, 258–259, 260
instances of objects, 71
Internet Explorer

blocked JavaScript content, 31
Console in, 37–38
developer tools in, 141

interpreters, 25
An Introduction to JavaScript (web site), 498
isNaN() function, JavaScript, 42, 92, 447–448

J
Java applets, 23
Java, compared to JavaScript, 2
JavaScript, 1–3

adding to web page, 25–29
arrays. See arrays
case-sensitivity of, 473–474
as client-side language, 23
comments, 72–76, 124
compared to Java, 2
conditional statements. See conditional

statements
data types, 42–45. See also specific data types
debugging. See debugging
editors for, 10–11
in external files. See external JavaScript files
functions, built-in. See built-in functions
functions, user-defined, 100–108
history of, 2–3
libraries for, 33, 117–119. See also jQuery
loops. See loops
math operations, 50–51, 54–55
objects, 70–72
online examples using, 2, 23, 124
other software using, 3
resources for, 11, 497–498, 500–501
as scripting language, 25
statements, 41–42
variables. See variables

JavaScript interpreter, 25
JavaScript Object Notation. See JSON

(JavaScript Object Notation)
JavaScript Patterns (O’Reilly), 501
JavaScript Quick Reference from DevGuru

(web site), 497
JavaScript: The Definitive Guide

(O’Reilly), 498
JavaScript: The Good Parts (O’Reilly), 501
jqDock plug-in, 256
jQuery, 3–4, 117

Ajax, functions for
error() function, 364
get() function, 356–357, 358, 365–370
getJSON() function, 371–376, 378, 381
load() function, 349–352, 352–356

Index

511index

post() function, 356–357, 358
serialize() function, 360

animations, 192–198
attaching to a web page, 122–124
CSS classes, manipulating, 142–143
CSS properties, manipulating, 143–146
DOM, traversing, 413–418
downloading, 120–121
effects. See effects
events. See events
filters, 135–136, 260–261
forms. See forms
functions. See also specific functions

anonymous, 148–149, 171–172
chaining, 137–138, 146
passing to events, 163–164

HTML manipulation, 124–127, 138–141,
146–147, 419–421

image manipulation. See images
linking to CDN version of, 119–120
navigation. See navigation
online examples using, 4
performance of, 407
plug-ins for. See plug-ins, for jQuery
resources for, 12, 312, 407–413, 499–500
selectors. See selectors
versions of, 122

jQuery API (Application Programming
Interface), 407–413

jQuery Cheatsheet (web site article), 499
jQuery.com (web site), 499
jQuery Cookbook (O’Reilly), 499
jQuery Essentials (web site presentation), 499
jQuery for Designers (web site), 499
jQuery() function, 403–404, 408
jQuery in Action (Manning), 499
jQuery: Novice to Ninja (Sitepoint), 500
jQuery objects, 129, 403–404
jQuery Tools Tooltip plug-in, 338
jQuery Tutorials for Designers (web site

article), 499
jQuery UI project, 312
jQuery UI Tooltip plug-in, 338
.js file extension, 27, 33
js folder, 29
JSON (JavaScript Object Notation), 370–376

accessing data formatted as, 372–373
nested JSON objects, 373–376
receiving data formatted as, 370–372

JSONP (JSON with padding), 377–378

K
Katz, Yehuda (author)

jQuery in Action (Manning), 499
keyboard events, 162
keyboard shortcuts, 14
keydown event, 162
keypress event, 162
keyup event, 162
keywords (reserved words), 46–47, 472–473

L
label tag, HTML, 259
:last filter, 135
layers of a web page, 4

behavioral. See JavaScript
presentational. See CSS (Cascading Style

Sheets)
structural. See HTML (Hypertext Markup

Language)
layout of web pages

content slider. See content slider
dimensions of elements, determining, 319–

322
position of elements, determing, 322–324
scrolling position, determing, 324–325
tabbed panels. See tabbed panels

layout/rendering engine, 25
Learning jQuery (web site), 499
Learning PHP, MySQL, and JavaScript

(O’Reilly), 351
left angle bracket (<)

less than operator, 80
<= less than or equal to operator, 80

left property, windows, 242
length property

arrays, 63, 65
strings, 425–426

less than operator (<), 80
less than or equal to operator (<=), 80
libraries, 33, 117–119. See also external

JavaScript files; jQuery
libs folder, 29
Lightbox, 222
linear easing method, 194
links, 235–238

a tag for, 6
destination of

determining, 236–237
preventing from going to, 237–238

external, opening in new window, 238–240
HTML syntax for, 6
selecting, 235–236
for tabs in tabbed panels, 304–305

Index

512 index

li tag, HTML, for navigation menu, 250–252
load event, 160
load() function, jQuery, 349–356
local variables, 107–108
location property, windows, 243
logging in without leaving web page, 343
logical AND operator (&&), 86
logical OR operator (||), 86
logic errors, 471
login slider tutorial, 190–192
loops, 93–99

automatic, for jQuery selections, 136–137
do/while loops, 98–99
for loops, 97–98
infinite loops, 94
traversing arrays using, 95–99
tutorials using, 108–114
while loops, 93–95

M
MacDonald, Matthew (author)

HTML5: The Missing Manual (O’Reilly), 5
MAMP, 346
maps. See GoMap plug-in; Google Maps (web

site)
match() method, strings, 441–443
math operations, 50–51, 54–55
maxlength validation rule, 287
max validation rule, 287
McLaughlin, Brett (author)

Head Rush Ajax (O’Reilly), 500
menubar property, windows, 243
menus, 14
methods, 71
Meyer, Eric (author)

CSS: The Definitive Guide (O’Reilly), 502
Mickley Gillenwater, Zoe (author)

Stunning CSS3 (New Riders), 502
.min file extension, 33, 121
minified files, 121
minlength validation rule, 287
minus sign (-). See also hyphen (-), in CSS

properties
subtraction operator, 50
-- subtract 1 operator, 54
-= subtract and assign operator, 54

min validation rule, 287
Mootools library, 119
Morrison, Michael (author)

Head First JavaScript (O’Reilly), 498
mousedown event, 159
mouse events, 159–160, 171–173
mousemove event, 159
mouseout event, 159, 329
mouseover event, 159, 210–211, 329, 330–338

mouseup event, 159
moveBy() method, window object, 244
moveTo() method, window object, 244
Mozilla Developer Center Core JavaScript

Reference (web site), 497
Mozilla Developers Network, JavaScript

section (web site), 501
MSDN JavaScript Language Reference (web

site), 498
multiplication operator (*), 50
multiply and assign operator (*=), 54

N
navigation

animated navigation bar, 249–256
links. See links
opening a new window, 240–245
opening a window within a page, 245–249

Navigation plug-in, 252–253
nesting

if statements, 88–89
JSON objects, 373–376

Netflix (web site), 124
next() function, 417
Notepad++, 10
:not filter, 135
NOT operator (!), 87–88
Number() function, JavaScript, 53, 446
numbers, 43

combining with strings, 52–53
converting strings to, 445–447
currency, formatting, 448–449
random numbers, creating, 449–451
rounding, 448
testing for, 447–448

number validation rule, 282

O
object literals

for CSS, 145–146
for data to send to server, 359–360
for JSON, 371

objects, 70–72
:odd filter, 135
offset() function, jQuery, 322
online resources

Ajax, 500
CSS, 132, 502
easing methods, 195
editors, 10–11
for this book, 15–18, 16, 29
HTML5, 5
HTML types, templates for, 5
iframes, 246
JavaScript, 11, 497–498, 500–501

Index

513index

examples using, 2, 23, 124
libraries for, 119

jQuery, 12, 499
documentation for, 407–413
examples using, 4
performance of, 407
plug-ins for, 256
UI project, 312

PHP, 351
open() method, window object, 240–241
order of operations, 51
OR operator, logical (||), 86
outerHeight() function, jQuery, 321
outerWidth() function, jQuery, 321
overlayColor option, FancyBox, 227
overlayOpacity option, FancyBox, 227

P
padding option, FancyBox, 227
pageX property, event object, 174
pageY property, event object, 174
parameters, for functions, 102–104
parent() function, 415–416
parentheses (())

following function name, 42, 100, 102
grouping operations, 51
in if statement, 79
syntax errors involving, 468

parseFloat() function, JavaScript, 447
parseInt() function, JavaScript, 446–447
:password selector, 260
patterns in strings, 430–445

for dates, 439
for email addresses, 438–439
match() method for, 441–443
regular expressions, creating, 431–436
replacing, 443–444
search() method for, 431
for U.S. phone numbers, 437–438
for U.S. Zip codes, 436
for web addresses, 440–441

Pels, Chris (author)
Do Object Oriented Programming with

JavaScript (web site video), 500
performance. See also speed (easing) of effects

and animations
chaining functions, 146
changing page content, 405–406
compressing external JavaScript files, 465–

466
ID selectors, 406
of jQuery, 407
resources regarding, 407

period (.)
any one character, in regular expressions, 432
preceding class selectors, 132
preceding jQuery functions, 138
preceding object properties or methods, 63,

64, 71
phone numbers, regular expression for, 437–

438
photo gallery

with effects, 216–222
with FancyBox. See FancyBox plug-in

PHP, 351
PHP Solutions:Dynamic Web Design Made

Easy (Friends of Ed), 351
pipe character (|)

|| logical OR operator, 86
plug-ins

for Firefox
Firebug. See Firebug plug-in
HTML Validator, 7

for jQuery, 118
for Ajax, 388
AnythingSlider, 312–319
Color, 192
Datepicker, 125, 276
DDMegaMenu, 256
FancyBox. See FancyBox plug-in
GoMap, 387–400
jqDock, 256
Navigation, 252–253
for tooltips, 338
Validation, 280–291

for Safari
Safari Validator, 7

plus sign (+)
addition operator, 50
concatenation operator, 51
in regular expressions, 435
++ add 1 operator, 54
+= add and assign operator, 54
+= concatenate and assign operator, 55

pop() method, arrays, 65, 66
pop-up windows. See dialog boxes; tooltips
position

absolute positioning, 189
scrolling position of web page, 324–325
of web page elements, 322–324

position() function, jQuery, 323
postal codes, regular expressions for, 436
post() function, jQuery, 356–357, 358
pound sign (#), in ID selectors, 130
prepend() function, jQuery, 139, 405–406, 419
presentational layer, 4. See also CSS (Cascading

Style Sheets)

Index

514 index

preventDefault() function, jQuery, 175,
237–238

prev() function, 417
processContacts() function, jQuery, 372
programming, 22–25
prompt() function, JavaScript, 57–58
properties, CSS, 9

hyphens in, handling in JavaScript, 193
manipulating, 143–146

properties, JavaScript, 71
Prototype library, 119
p tag, HTML, 6, 7
pull quotes, tutorial for, 150–156
punctuation errors, 31, 36–37, 467–472
push() method, arrays, 64, 65

Q
qTip2 plug-in, 338
query strings, 357–359
question mark (?)

in regular expressions, 435
? : ternary operator, 461–462

queues, creating, 65
quiz, tutorial for, 108–114
quotes (“...” or ‘...’)

enclosing strings, 43–44
syntax errors involving, 469, 472

R
radio buttons

selecting, 260
status of, determing, 262–263
validating, 297–299

:radio selector, 260
random() method, JavaScript, 449–451
rangelength validation rule, 287
range validation rule, 288
ready() function. See $(document).ready()

function
regex. See regular expressions
regular expressions, 430–445

creating, 431–436
for dates, 439
for email addresses, 438–439
match() method using, 441–443
replace() method using, 443–444
search() method using, 431
subpatterns in, 435–436, 437, 438, 444
for U.S. phone numbers, 437–438
for U.S. Zip codes, 436
for web addresses, 440–441

A (Re)-Introduction to JavaScript (web site
presentation), 498

remote validation, 289
removeAttr() function, jQuery, 147

removeClass() function, jQeury, 142
remove() function, jQuery, 140, 419
rendering engine. See layout/rendering engine
replace() function, jQuery, 140
replace() method, strings, 443–444
replaceWith() function, 419
required validation rule, 282
reserved words (keywords), 46–47, 472–473
reset event, 161
:reset selector, 260
resizeBy() method, window object, 244
resize event, 160
resizeTo() method, window object, 244
resources. See books and publications; online

resources
return value, of function, 104–105
right angle bracket (>)

greater than operator, 80
>= greater than or equal to operator, 80

rollover images, 210–216
root-relative path URL, 28
round() method, Math object, 448
rules, CSS. See styles, CSS
runtime errors, 471

S
\s symbol, in regular expressions, 432
\S symbol, in regular expressions, 432
Safari

Develop menu in, 141
Error Console in, 39–40

Safari Validator plug-in, 7
Sawyer McFarland, David (author)

CSS: The Missing Manual 2nd Edition
(O’Reilly), 4, 132, 502

scope of variables, 105–108
screenX property, event object, 174
screenY property, event object, 174
scripting languages, 25
Script Junkie (web site), 499
scripts. See also JavaScript; jQuery

embedding in web page, 25–27, 124
external. See external JavaScript files
order executed, 31

script tag, HTML, 25–27
src attribute, 27–29, 33–34
type attribute, 26

scrollbars property, windows, 242
scrollBy() method, window object, 244
scroll event, 160
scrolling position of page, 324–325
scrollLeft() function, jQuery, 325
scrollTo() method, window object, 244
scrollTop() function, jQuery, 325
searching DOM, 413–418

Index

515index

searching selections, 365, 407, 413, 414–415
searching strings

for exact strings, 427–428
for patterns. See patterns in strings

search() method, strings, 431
:selected filter, 261
selectors, 8, 129–138

acting on each element of, 147–150
adjacent sibling selectors, 133
assigning events to, 163–164
attribute selectors, 133–134, 239
automatic loops for, 136–137
chaining functions for, 137–138
child selectors, 133
class selectors, 131–132
compared to DOM, 136–138
descendent selectors, 133
effects applied to, 185–186
element selectors, 131
filters for, 135–136, 260–261
for form elements, 259–261
ID selectors, 130–131, 406
for links, 235–236
optimizing performance of, 406–407
resources for, 409
saving into variables, 404–405
searching selections, 365, 407, 413, 414–415
tutorials for, 150–156

select tag, HTML, 258–259, 260, 261
Selectutorial (web site), 502
semicolon (;), ending JavaScript

statements, 41–42
serialize() function, jQuery, 360
server

application server, 345
database server, 345
development server, 346
web server, Ajax communication with,

343–349
server-side languages, 23
server side programming, 351
Sharkie, Craig (author)

jQuery: Novice to Ninja (Sitepoint), 500
shiftKey property, event object, 174
shift() method, arrays, 65, 66
show() function, jQuery, 187
showing elements. See visibility of elements
Show Love to the Object Literal (blog

post), 500
siblings() function, 416–417
The SitePoint CSS Reference (web site), 502
slash. See backslash (\); forward slash (/)
slice() method, strings, 428–430
slideDown() function, jQuery, 188

slideshow of web page content. See content
slider

slideToggle() function, jQuery, 188
slideUp() function, jQuery, 188
sliding elements, 188–189, 190–192
software

editors, 10–11
plug-ins. See plug-ins

Sorting a JavaScript Array (web site
article), 500

spaces, in JavaScript, 49
speed (easing) of effects and animations, 185,

194–196, 227. See also performance
spelling errors. See syntax errors
sprites, CSS

in content slider, 316
FancyBox using, 228

square brackets ([...]). See brackets ([...])
src attribute

image tag, 208–209
script tag, 27–29, 33–34

star-rating widget, 343
statements, 41–42
status property, windows, 242
Stefanov, Stoyan (author)

JavaScript Patterns (O’Reilly), 501
stepping through scripts in debugger, 485–489
stopPropagation() function, jQuery, 176
strict equality operator (===), 80
strict inequality operator (!==), 80
strings, 43–44, 425–430

case of, 426–427
combining with numbers, 52–53
concatenating strings, 51–52, 55, 56
converting to numbers, 445–447
empty string, 58
extracting part of, 428–430
length of, 425–426
searching for exact strings in, 427–428
searching for patterns in, 430–445

dates, 439
email addresses, 438–439
match() method for, 441–443
regular expressions, creating, 431–436
replacing text using, 443–444
search() method for, 431
U.S. phone numbers, 437–438
U.S. Zip codes, 436
web addresses, 440–441

strong tag, HTML, 6
structural layer, 4. See also HTML (Hypertext

Markup Language)
Stunning CSS3 (New Riders), 502
styles, CSS, 7–9. See also CSS (Cascading Style

Sheets)

Index

516 index

submit event, 161, 263–264
submit() function, jQuery, 263–264, 271
:submit selector, 260
submitting forms, 161, 263–264

multiple times, preventing, 271
without reloading page, 343, 347–348,

365–370
subpatterns, in regular expressions, 437, 438,

444
subtract 1 operator (--), 54
subtract and assign operator (-=), 54
subtraction operator (-), 50
swing easing method, 194
switch statement, 462–465
syntax errors, 31, 37

with case-sensitivity, 473
with paths, 474–476
with punctuation, 31, 36–37, 467–473
with reserved words, 472–473
with undefined elements, 37, 476–477

T
tabbed panels, 301–312

CSS elements for, 304–306
HTML elements for, 302–304
JavaScript for, 306–307
jQuery UI project for, 312
tutorials for, 307–312

tab characters, in JavaScript, 49
Taconite plug-in, 388
tags, HTML, 5–7
target attribute, links, 238–240
target property, event object, 174
ternary operator (? :), 461–462
textarea tag, HTML, 258, 260
text() function, jQuery, 139, 405–406, 419
textMate, 11
:text selector, 260
TextWrangler, 10
$(this) variable, 149–150, 405
times, functions for, 450–457
titlePosition option, FancyBox, 228
toFixed() method, JavaScript, 448–449
toggleClass() function, jQuery, 143
toggle event, 173
toggle() function, jQuery, 187
toLowerCase() method, strings, 426–427
toolbar property, windows, 243
tooltips, 326–338

CSS styles for, 328
div tag for, 326–327, 329
hiding when page loads, 328–329, 330
mouseout event for, 329
mouseover event for, 329, 330–338
plug-ins for, 338

trigger for, 326–327, 330
tutorial for, 329–338

top property, windows, 242
toUpperCase() method, strings, 426–427
transitionIn option, FancyBox, 227
transitionOut option, FancyBox, 227
trigger, for tooltip, 326–327, 330
troubleshooting, 34–40, 467–477. See

also debugging
Chrome JavaScript Console for, 38–39
conditional statements, 89
Firefox JavaScript Console for, 35–37
Internet Explorer 9 Console for, 37–38
logic errors, 471
runtime errors, 471
Safari Error Console for, 39–40
syntax errors, 31, 37

with case-sensitivity, 473
with paths, 474–476
with punctuation, 31, 36–37, 467–473
with reserved words, 472–473
with undefined elements, 37, 476–477

true value. See booleans
tutorials

Ajax, 352–356, 365–370, 383–387, 397–400
animated dashboard, 198–204
animated navigation bar, 249–256
AnythingSlider plug-in, 314–316
arrays, 66–70
conditional statements, 89–92
CSS selectors, 150–156
debugging, 481–484, 489–496
effects, 190–192, 216–222
events, 165–169, 180–184
FAQ (Frequently Asked Questions), 180–184
Flickr, 383–387
forms, 272–278
form validation, 291–300
functions, 101–102, 108–114
GoMap plug-in, 397–400
images, 211–216, 216–222, 231–234
login slider, 190–192
loops, 108–114
opening a page within a page, 248–249
photo gallery

with effects, 216–222
with FancyBox, 231–234

pull quotes, 150–156
quiz, 108–114
rollover images, 211–216
tabbed panels, 307–312
tooltips, 329–338
variables, 55–59

Twitter plug-in, 388
type attribute, script tag, 26

Index

517index

typeof operator, 72
typing errors. See syntax errors

U
ul tag, HTML, 7

for navigation menu, 250–252
for tabs in tabbed panels, 302–303, 304

unbind() function, jQuery, 175–176
Uniform Resource Locator. See URL
unload event, 160
Unobtrusive JavaScript (web site), 501
unshift() method, arrays, 64, 65
unwrap() function, 421
URL (Uniform Resource Locator)

for Flickr feeds, constructing, 379–381
in links, 6
for src attribute, script tag, 28
types of, 28
validating user input for, 282

url validation rule, 282
U.S. phone numbers, regular expression

for, 437–438
U.S. Zip codes, regular expression for, 436

V
val() function, jQuery, 261–262
validate() function, jQuery, 281, 284–288,

294–297
validating forms, 278–291

error messages for, 283–284, 288–291,
299–300

plug-in for, setting up, 280–281
on server, 289
tutorial for, 291–300
validation rules for, 281–283, 284–288

validating web pages, 7
Validation plug-in, 280–291
variables, 45–49. See also parameters

accessing values in, 48
assigning values to, 48, 55
changing value of, 53–55
declaring, 45, 55
global variables, 107–108
increasing flexibility of code, 460–461
local variables, 107–108
naming, 45–48, 404
as objects, 72
saving selections into, 404–405
scope of, 105–108
setting based on a condition, 461–462
tutorials for, 55–59
undefined errors involving, 476

var keyword, 45, 49, 61, 107
vertical bar (|). See pipe character (|)
View Source command, in browsers, 141

visibility of elements, 187
form fields, 271–272, 276–278
:hidden filter for, 136
:hidden selector for, 260
tooltips, 328–329, 330
:visible filter for, 136

W
\w symbol, in regular expressions, 432
\W symbol, in regular expressions, 432
The W3 Schools JavaScript tutorial (web

site), 498
WAMP, 346
web addresses, regular expressions for, 440–

441
web pages. See also HTML (Hypertext Markup

Language)
adding content to, 31–32, 66–70, 138–141,

405–406
adding JavaScript to, 25–29
adding jQuery to, 122–124
applying CSS styles to, 124–127
forms in. See forms
images in. See images
layers of, 4
layout of

content slider. See content slider
dimensions of elements,

determining, 319–322
position of elements, determing, 322–324
scrolling position, determing, 324–325
tabbed panels. See tabbed panels

model of HTML elements in. See DOM
modifying, 124–127, 146–147, 419–421
navigation for. See navigation
tooltips for, 326–338
updating content without reloading. See Ajax

(Asynchronous JavaScript and XML)
validating, 7
waiting to download before running

scripts, 123, 169–171
web server, Ajax communication with, 343–

349
web site resources. See online resources
which property, event object, 174
while loops, 93–95
white space, in JavaScript, 49
width. See dimensions
width() function, jQuery, 319–322
width property, windows, 242
Willison, Simon (author)

A (Re)-Introduction to JavaScript (web site
presentation), 498

Index

518 index

window object (browser window), 72. See
also dialog boxes

closing, 243
events for, 160
focus of, setting, 244
methods for, 240–241, 243–245. See

also built-in functions
moving, 244
new

creating, 240–245
creating within an iframe, 245–249
opening external links in, 238–240

properties of, 241–243
resizing, 244
scrolling, 244

wrap() function, 420
wrapInner() function, 420–421
wrapping. See text wrapping
write() method, document object, 31–32, 56

X
XHR object. See XMLHttpRequest object
XHTML, 5
XMLHttpRequest (XHR) object, 344–345,

346–349
XML, receiving from web server, 365

Y
Yahoo’s JavaScript Developer Center (web

site), 501
Yahoo User Interface (YUI) library, 119

Z
Zip codes, regular expression for, 436

Colophon
This book was composited in Adobe InDesign CS4 by Newgen North America.
Rebecca Demarest provided production assistance.

The cover of this book is based on a series design originally created by David Freed-
man and modified by Mike Kohnke, Karen Montgomery, and Fitch (www.fitch
.com). Back cover design, dog illustration, and color selection by Fitch.

David Futato designed the interior layout, based on a series design by Phil Simpson.
The text font is Adobe Minion; the heading font is Adobe Formata Condensed;
and the code font is LucasFont’s TheSansMonoCondensed. The illustrations that
appear in the book were produced by Robert Romano using Adobe Photoshop and
Illustrator CS5.5.

	Table of Contents
	The Missing Credits
	Introduction
	Part One: Getting Started with JavaScript
	Chapter 1: Writing Your First JavaScript Program
	Introducing Programming
	What’s a Computer Program?

	How to Add JavaScript to a Page
	External JavaScript Files

	Your First JavaScript Program
	Writing Text on a Web Page
	Attaching an External JavaScript File
	Tracking Down Errors
	The Firefox JavaScript Console
	Displaying the Internet Explorer 9 Console
	Opening the Chrome JavaScript Console
	Accessing the Safari Error Console

	Chapter 2: The Grammar of JavaScript
	Statements
	Built-In Functions
	Types of Data
	Numbers
	Strings
	Booleans

	Variables
	Creating a Variable
	Using Variables

	Working with Data Types and Variables
	Basic Math
	The Order of Operations
	Combining Strings
	Combining Numbers and Strings
	Changing the Values in Variables

	Tutorial: Using Variables to Create Messages
	Tutorial: Asking for Information
	Arrays
	Creating an Array
	Accessing Items in an Array
	Adding Items to an Array
	Deleting Items from an Array

	Tutorial: Writing to a Web Page Using Arrays
	A Quick Object Lesson
	Comments
	When to Use Comments
	Comments in This Book

	Chapter 3: Adding Logic and Control to Your Programs
	Making Programs React Intelligently
	Conditional Statement Basics
	Adding a Backup Plan
	Testing More Than One Condition
	More Complex Conditions
	Nesting Conditional Statements
	Tips for Writing Conditional Statements

	Tutorial: Using Conditional Statements
	Handling Repetitive Tasks with Loops
	While Loops
	Loops and Arrays
	For Loops
	Do/While Loops

	Functions: Turn Useful Code Into Reusable Commands
	Mini-Tutorial
	Giving Information to Your Functions
	Retrieving Information from Functions
	Keeping Variables from Colliding

	Tutorial: A Simple Quiz

	Part Two: Getting Started with jQuery
	Chapter 4: Introducing jQuery
	About JavaScript Libraries
	Getting jQuery
	Adding jQuery to a Page
	Modifying Web Pages: An Overview
	Understanding the Document Object Model
	Selecting Page Elements: The jQuery Way
	Basic Selectors
	Advanced Selectors
	jQuery Filters
	Understanding jQuery Selections

	Adding Content to a Page
	Replacing and Removing Selections

	Setting and Reading Tag Attributes
	Classes
	Reading and Changing CSS Properties
	Changing Multiple CSS Properties at Once

	Reading, Setting, and Removing HTML Attributes
	Acting on Each Element in a Selection
	Anonymous Functions
	this and $(this)

	Automatic Pull Quotes
	Overview
	Programming

	Chapter 5: Action/Reaction: Making Pages Come Alive with Events
	What Are Events?
	Mouse Events
	Document/Window Events
	Form Events
	Keyboard Events

	Using Events the jQuery Way
	Tutorial: Introducing Events
	More jQuery Event Concepts
	Waiting for the HTML to Load
	jQuery Events
	The Event Object
	Stopping an Event’s Normal Behavior
	Removing Events

	Advanced Event Management
	Other Ways to Use the bind() Function

	Tutorial: A One-Page FAQ
	Overview of the Task
	The Programming

	Chapter 6: Animations and Effects
	jQuery Effects
	Basic Showing and Hiding
	Fading Elements In and Out
	Sliding Elements

	Tutorial: Login Slider
	The Programming

	Animations
	Easing

	Performing an Action After an Effect Is Completed
	Tutorial: Animated Dashboard
	The Programming

	Part Three: Building Web Page Features
	Chapter 7: Improving Your Images
	Swapping Images
	Changing an Image’s src Attribute
	Preloading Images
	Rollover Images

	Tutorial: Adding Rollover Images
	Overview of the Task
	The Programming

	Tutorial: Photo Gallery with Effects
	Overview of Task
	The Programming

	Advanced Gallery with jQuery FancyBox
	The Basics
	Creating a Gallery of Images
	Customizing FancyBox

	Tutorial: FancyBox Photo Gallery

	Chapter 8: Improving Navigation
	Some Link Basics
	Selecting Links with JavaScript
	Determining a Link’s Destination
	Don’t Follow That Link

	Opening External Links in a New Window
	Creating New Windows
	Window Properties

	Opening Pages in a Window on the Page
	Tutorial: Opening a Page Within a Page

	Basic, Animated Navigation Bar
	The HTML
	The CSS
	The JavaScript
	The Tutorial

	Chapter 9: Enhancing Web Forms
	Understanding Forms
	Selecting Form Elements
	Getting and Setting the Value of a Form Element
	Determining Whether Buttons and Boxes Are Checked
	Form Events

	Adding Smarts to Your Forms
	Focusing the First Field in a Form
	Disabling and Enabling Fields
	Hiding and Showing Form Options

	Tutorial: Basic Form Enhancements
	Focusing a Field
	Disabling Form Fields
	Hiding Form Fields

	Form Validation
	jQuery Validation Plug-in
	Basic Validation
	Advanced Validation
	Styling Error Messages

	Validation Tutorial
	Basic Validation
	Advanced Validation
	Validating Checkboxes and Radio Buttons
	Formatting the Error Messages

	Chapter 10: Expanding Your Interface
	Organizing Information in Tabbed Panels
	The HTML
	The CSS
	The JavaScript
	Tabbed Panels Tutorial

	Adding a Content Slider to Your Site
	Using AnythingSlider
	AnythingSlider Tutorial
	Customizing the Slider Appearance
	Customizing the Slider Behavior

	Determining the Size and Position of Page Elements
	Determining the Height and Width of Elements
	Determining the Position of Elements on a Page
	Determining a Page’s Scrolling Position

	Adding Tooltips
	The HTML
	The CSS
	The JavaScript
	Tooltips Tutorial

	Part Four: Ajax: Communication with the Web Server
	Chapter 11: Introducing Ajax
	What Is Ajax?
	Ajax: The Basics
	Pieces of the Puzzle
	Talking to the Web Server

	Ajax the jQuery Way
	Using the load() Function
	Tutorial: The load() Function
	The get() and post() Functions
	Formatting Data to Send to the Server
	Processing Data from the Server
	Handling Errors
	Tutorial: Using the get() Function

	JSON
	Accessing JSON Data
	Complex JSON Objects

	Chapter 12: Flickr and Google Maps
	Introducing JSONP
	Adding a Flickr Feed to Your Site
	Constructing the URL
	Using the $.getJSON() Function
	Understanding the Flickr JSON Feed

	Tutorial: Adding Flickr Images to Your Site
	Adding Google Maps to Your Site
	Setting a Location for the Map
	Other GoMap Options
	Adding Markers
	Adding Information Windows to Markers
	GoMap Tutorial

	Part Five: Tips, Tricks, and Troubleshooting
	Chapter 13: Getting the Most from jQuery
	Useful jQuery Tips and Information
	$() Is the Same as jQuery()
	Saving Selections Into Variables
	Adding Content as Few Times as Possible
	Optimizing Your Selectors

	Using the jQuery Docs
	Reading a Page on the jQuery Docs Site

	Traversing the DOM
	More Functions For Manipulating HTML
	Advanced Event Handling

	Chapter 14: Going Further with JavaScript
	Working with Strings
	Determining the Length of a String
	Changing the Case of a String
	Searching a String: indexOf() Technique
	Extracting Part of a String with slice()

	Finding Patterns in Strings
	Creating and Using a Basic Regular Expression
	Building a Regular Expression
	Grouping Parts of a Pattern
	Useful Regular Expressions
	Matching a Pattern
	Replacing Text
	Trying Out Regular Expressions

	Working with Numbers
	Changing a String to a Number
	Testing for Numbers
	Rounding Numbers
	Formatting Currency Values
	Creating a Random Number

	Dates and Times
	Getting the Month
	Getting the Day of the Week
	Getting the Time
	Creating a Date Other Than Today

	Putting It All Together
	Using External JavaScript Files

	Writing More Efficient JavaScript
	Putting Preferences in Variables
	Ternary Operator
	The Switch Statement

	Creating Fast-Loading JavaScript

	Chapter 15: Troubleshooting and Debugging
	Top JavaScript Programming Mistakes
	Non-Closed Pairs
	Quotation Marks
	Using Reserved Words
	Single Equals in Conditional Statements
	Case-Sensitivity
	Incorrect Path to External JavaScript File
	Incorrect Paths Within External JavaScript Files
	Disappearing Variables and Functions

	Debugging with Firebug
	Installing and Turning On Firebug
	Viewing Errors with Firebug
	Using console.log() to Track Script Progress
	Tutorial: Using the Firebug Console
	More Powerful Debugging

	Debugging Tutorial

	Appendix A: JavaScript Resources
	References
	Basic JavaScript
	jQuery
	Ajax
	Advanced JavaScript
	CSS

	Index

